These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35809727)

  • 41. Circularity measurement of external resource flows in companies: The circular flow tool.
    Barros MV; Salvador R; Gallego-Schmid A; Piekarski CM
    Waste Manag; 2023 Mar; 158():136-145. PubMed ID: 36709679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protocol for life cycle assessment modeling of US fruit and vegetable supply chains- cases of processed potato and tomato products.
    Parajuli R; Gustafson D; Asseng S; Stöckle CO; Kruse J; Zhao C; Intrapapong P; Matlock MD; Thoma G
    Data Brief; 2021 Feb; 34():106639. PubMed ID: 33365369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lean-circular maturity model (LCMM) for companies' self-assessment in terms of process, product and life cycle thinking.
    Hernandes de Paula E Silva M; Coser Mergulhão R; Geraldo Vidal Vieira J; Brasco Pampanelli A; Salvador R; Aparecido Lopes Silva D
    Waste Manag; 2024 Jan; 173():172-183. PubMed ID: 37995566
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel multi-objective robust fuzzy stochastic programming model for sustainable agri-food supply chain: case study from an emerging economy.
    Rahbari M; Khamseh AA; Mohammadi M
    Environ Sci Pollut Res Int; 2023 May; 30(25):67398-67442. PubMed ID: 37103702
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Critical Review of EU Key Indicators for the Transition to the Circular Economy.
    Pacurariu RL; Vatca SD; Lakatos ES; Bacali L; Vlad M
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implementing life cycle sustainability assessment for improved space mission design.
    Wilson AR; Vasile M; Maddock C; Baker K
    Integr Environ Assess Manag; 2023 Jul; 19(4):1002-1022. PubMed ID: 36519962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of water as raw material on material circularity - A case study from the Hungarian food sector.
    H-Hargitai R; Somogyi V
    Heliyon; 2023 Jul; 9(7):e17587. PubMed ID: 37483782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Circular And Sustainable: Evaluating Lithium-Ion Battery Recycling using a Combined Statistical Entropy and Life Cycle Assessment Methodology.
    Tas G; Klemettinen A; Serna-Guerrero R
    ChemSusChem; 2024 Sep; 17(18):e202400376. PubMed ID: 38654587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tools Towards the Sustainability and Circularity of Data Centers.
    Hoosain MS; Paul BS; Kass S; Ramakrishna S
    Circ Econ Sustain; 2023; 3(1):173-197. PubMed ID: 35791435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Life cycle sustainability assessment of a light rail transit system: Integration of environmental, economic, and social impacts.
    Gulcimen S; Aydogan EK; Uzal N
    Integr Environ Assess Manag; 2021 Sep; 17(5):1070-1082. PubMed ID: 33860623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An analysis of design strategies for circular economy through life cycle assessment.
    Spreafico C
    Environ Monit Assess; 2022 Feb; 194(3):180. PubMed ID: 35157161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review.
    De Luca AI; Iofrida N; Leskinen P; Stillitano T; Falcone G; Strano A; Gulisano G
    Sci Total Environ; 2017 Oct; 595():352-370. PubMed ID: 28395257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applying social life cycle assessment in the informal recycling sector: Understanding challenges and limitations.
    Sigcha E; Sucozhañay D; Cabrera F; Pacheco G; Vanegas P
    Waste Manag; 2024 May; 181():20-33. PubMed ID: 38574689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards a new framework to assess agri-food value chains' sustainability - The case of chestnut value chain.
    Allali T; Colabianchi M; Moretti M; Brunori G
    Heliyon; 2024 Apr; 10(7):e27836. PubMed ID: 38560188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Benchmarking circularity in supply chains: A systematic literature review.
    de Koning I; Kassahun A; Tekinerdogan B
    J Environ Manage; 2024 Aug; 366():121676. PubMed ID: 38972187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. When product diversification influences life cycle impact assessment: A case study of canned anchovy.
    Laso J; Margallo M; Fullana P; Bala A; Gazulla C; Irabien Á; Aldaco R
    Sci Total Environ; 2017 Mar; 581-582():629-639. PubMed ID: 28062111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining organizational and product life cycle perspective to explore the environmental benefits of steel slag recovery practices.
    Toniolo S; Marson A; Fedele A
    Sci Total Environ; 2023 Apr; 867():161440. PubMed ID: 36623664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deliver Smart, Not More! Building Economically Sustainable Competitiveness on the Ground of High Agri-Food Trade Specialization in the EU.
    Constantin M; Sapena J; Apetrei A; Pătărlăgeanu SR
    Foods; 2023 Jan; 12(2):. PubMed ID: 36673324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector.
    Borrello M; Lombardi A; Pascucci S; Cembalo L
    Recent Pat Food Nutr Agric; 2016; 8(1):39-47. PubMed ID: 26957467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating the sustainable development goals derived due to adoption of circular economy practices.
    Lahane S; Kant R
    Waste Manag; 2022 Apr; 143():1-14. PubMed ID: 35217384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.