These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35809727)

  • 61. Comparative assessment of two circularity indicators for the case of reusable versus single-use secondary packages for fresh foods in Spain.
    Sazdovski I; Batlle-Bayer L; Bala A; Margallo M; Azarkamand S; Aldaco R; Fullana-I-Palmer P
    Heliyon; 2024 Mar; 10(6):e27922. PubMed ID: 38509916
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Socio-economic sustainability with circular economy - An alternative approach.
    Mukherjee PK; Das B; Bhardwaj PK; Tampha S; Singh HK; Chanu LD; Sharma N; Devi SI
    Sci Total Environ; 2023 Dec; 904():166630. PubMed ID: 37643712
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multi-Criteria Decision Analysis (MCDA) for sustainability assessment in food sector. A systematic literature review on methods, indicators and tools.
    Ferla G; Mura B; Falasco S; Caputo P; Matarazzo A
    Sci Total Environ; 2024 Oct; 946():174235. PubMed ID: 38944301
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system.
    de Souza Junior HRA; Dantas TET; Zanghelini GM; Cherubini E; Soares SR
    Sci Total Environ; 2020 Jul; 726():138111. PubMed ID: 32305774
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A systems engineering framework for the optimization of food supply chains under circular economy considerations.
    Baratsas SG; Pistikopoulos EN; Avraamidou S
    Sci Total Environ; 2021 Nov; 794():148726. PubMed ID: 34328124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Assessing circularity of multi-sectoral systems under the Water-Energy-Food-Ecosystems (WEFE) nexus.
    Nika CE; Vasilaki V; Renfrew D; Danishvar M; Echchelh A; Katsou E
    Water Res; 2022 Aug; 221():118842. PubMed ID: 35949075
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sustainable space for a sustainable Earth? Circular economy insights from the space sector.
    Paladini S; Saha K; Pierron X
    J Environ Manage; 2021 Jul; 289():112511. PubMed ID: 33910153
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Does circular economy performance lead to sustainable development? - A systematic literature review.
    Panchal R; Singh A; Diwan H
    J Environ Manage; 2021 Sep; 293():112811. PubMed ID: 34051536
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Unbuilding the city: Deconstruction and the circular economy in Vancouver.
    Lynch N
    Environ Plan A; 2022 Nov; 54(8):1586-1603. PubMed ID: 36176592
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Social life cycle assessment and participatory approaches: A methodological proposal applied to citrus farming in Southern Italy.
    De Luca AI; Iofrida N; Strano A; Falcone G; Gulisano G
    Integr Environ Assess Manag; 2015 Jul; 11(3):383-96. PubMed ID: 25556911
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Life cycle costing of food waste: A review of methodological approaches.
    De Menna F; Dietershagen J; Loubiere M; Vittuari M
    Waste Manag; 2018 Mar; 73():1-13. PubMed ID: 29305039
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Circular Economy Research in the COVID-19 Era: a Review and the Road Ahead.
    Rejeb A; Rejeb K; Appolloni A; Treiblmaier H; Iranmanesh M
    Circ Econ Sustain; 2023 Mar; ():1-31. PubMed ID: 37360377
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality.
    Zeng X
    Front Environ Sci Eng; 2023; 17(2):23. PubMed ID: 36118593
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Revisiting the application and methodological extensions of the planetary boundaries for sustainability assessment.
    Chen X; Li C; Li M; Fang K
    Sci Total Environ; 2021 Sep; 788():147886. PubMed ID: 34134372
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Emerging anthropogenic circularity science: principles, practices, and challenges.
    Zeng X; Li J
    iScience; 2021 Mar; 24(3):102237. PubMed ID: 33748719
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Circular design, material properties, service life and cradle-to-cradle carbon footprint of lime-based building materials.
    Laveglia A; Madrid DV; Ukrainczyk N; Cnudde V; De Belie N; Koenders E
    Sci Total Environ; 2024 Oct; 948():174875. PubMed ID: 39029753
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain.
    López-Gálvez F; Gómez PA; Artés F; Artés-Hernández F; Aguayo E
    Foods; 2021 Jul; 10(7):. PubMed ID: 34359525
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Life cycle management in bakeries: a proposed roadmap towards sustainability.
    Monteiro NBR; Moita Neto JM; da Silva EA
    Int J Life Cycle Assess; 2022; 27(1):82-97. PubMed ID: 34866807
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An integrated literature review on sustainable food supply chains: Exploring research themes and future directions.
    Kumar A; Mangla SK; Kumar P
    Sci Total Environ; 2022 May; 821():153411. PubMed ID: 35101515
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Economic impact assessment indicators of circular economy in a decentralised circular water system - Case of eco-touristic facility.
    Ghafourian M; Nika CE; Mousavi A; Mino E; Al-Salehi M; Katsou E
    Sci Total Environ; 2022 May; 822():153602. PubMed ID: 35121039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.