These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35809875)

  • 1. Understanding of synergy in non-isothermal microwave-assisted in-situ catalytic co-pyrolysis of rice husk and polystyrene waste mixtures.
    Sridevi V; Suriapparao DV; Tukarambai M; Terapalli A; Ramesh P; Sankar Rao C; Gautam R; Moorthy JV; Suresh Kumar C
    Bioresour Technol; 2022 Sep; 360():127589. PubMed ID: 35809875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of sustainable chemicals from waste tea powder and Polystyrene via Microwave-Assisted in-situ catalytic Co-Pyrolysis: Analysis of pyrolysis using experimental and modeling approaches.
    Suriapparao DV; Sridevi V; Ramesh P; Sankar Rao C; Tukarambai M; Kamireddi D; Gautam R; Dharaskar SA; Pritam K
    Bioresour Technol; 2022 Oct; 362():127813. PubMed ID: 36031137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of renewable aromatic and aliphatic hydrocarbon resources from microwave pyrolysis/co-pyrolysis of agro-residues and plastics wastes.
    Suriapparao DV; Yerrayya A; Nagababu G; Guduru RK; Kumar TH
    Bioresour Technol; 2020 Dec; 318():124277. PubMed ID: 33091691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of torrefaction temperature and catalyst loading in Microwave-Assisted in-situ catalytic Co-Pyrolysis of torrefied biomass and plastic wastes.
    Potnuri R; Suriapparao DV; Sankar Rao C; Sridevi V; Kumar A; Shah M
    Bioresour Technol; 2022 Nov; 364():128099. PubMed ID: 36241069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of solvent soaking and pretreatment temperature in microwave-assisted pyrolysis of waste tea powder: Analysis of products, synergy, pyrolysis index, and reaction mechanism.
    Talib Hamzah H; Sridevi V; Seereddi M; Suriapparao DV; Ramesh P; Sankar Rao C; Gautam R; Kaka F; Pritam K
    Bioresour Technol; 2022 Nov; 363():127913. PubMed ID: 36089130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.
    Zhang S; Dong Q; Zhang L; Xiong Y
    Bioresour Technol; 2015 Sep; 191():17-23. PubMed ID: 25974618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of pyrolysis index and reaction mechanism in microwave-assisted ex-situ catalytic co-pyrolysis of agro-residual and plastic wastes.
    Suriapparao DV; Gautam R; Rao Jeeru L
    Bioresour Technol; 2022 Aug; 357():127357. PubMed ID: 35605781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted catalytic fast pyrolysis of rice husk over a hierarchical HZSM-5/MCM-41 catalyst prepared by organic base alkaline solutions.
    Li Z; Zhong Z; Zhang B; Wang W; Zhao H; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2021 Jan; 750():141215. PubMed ID: 32862000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic activity of acid-treated biomass for the degradation of expanded polystyrene waste.
    Rex P; Miranda LR
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):438-455. PubMed ID: 31797273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Waste Manag; 2020 Feb; 102():561-568. PubMed ID: 31770690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of waste polystyrene into valuable aromatic hydrocarbons via microwave-assisted pyrolysis.
    Kachhadiya K; Patel D; Vijaybhai GJ; Raghuvanshi P; Surya DV; Dharaskar S; Kumar GP; Reddy BR; Remya N; Kumar TH; Basak T
    Environ Sci Pollut Res Int; 2023 Jun; ():. PubMed ID: 37365360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2020 Feb; 703():134605. PubMed ID: 31731164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple.
    Prathiba R; Shruthi M; Miranda LR
    Waste Manag; 2018 Jun; 76():528-536. PubMed ID: 29576515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative investigation of rice husk, thermoplastic bituminous coal and their blends in production of value-added gaseous and liquid products during hydropyrolysis/co-hydropyrolysis.
    Zhang J; Zheng N; Wang J
    Bioresour Technol; 2018 Nov; 268():445-453. PubMed ID: 30107358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.
    Duan D; Wang Y; Dai L; Ruan R; Zhao Y; Fan L; Tayier M; Liu Y
    Bioresour Technol; 2017 Oct; 241():207-213. PubMed ID: 28570885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil recovery from microwave co-pyrolysis of polystyrene and polypropylene plastic particles for pollution mitigation.
    Ahmad F; Cao W; Zhang Y; Pan R; Zhao W; Liu W; Shuai Y
    Environ Pollut; 2024 Sep; 356():124240. PubMed ID: 38810672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective electronic waste valorization via microwave-assisted pyrolysis: investigation of graphite susceptor and feedstock quantity on pyrolysis using experimental and polynomial regression techniques.
    Mistry C; Surya DV; Potnuri R; Basak T; Kumar PS; Rao CS; Gautam R; Sridhar P; Choksi H; Remya N
    Environ Sci Pollut Res Int; 2023 Dec; ():. PubMed ID: 38038921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism.
    Qiu Z; Zhai Y; Li S; Liu X; Liu X; Wang B; Liu Y; Li C; Hu Y
    Waste Manag; 2020 Aug; 114():225-233. PubMed ID: 32682087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
    Dai L; Fan L; Liu Y; Ruan R; Wang Y; Zhou Y; Zhao Y; Yu Z
    Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.