These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35809979)
1. Editorial Commentary: Machine Learning Can Indicate Hip Arthroscopy Procedures, Predict Postoperative Improvement, and Estimate Costs. Shapira J; Peskin B; Norman D Arthroscopy; 2022 Jul; 38(7):2217-2218. PubMed ID: 35809979 [TBL] [Abstract][Full Text] [Related]
2. Editorial Commentary: Personalized Hip Arthroscopy Outcome Prediction Using Machine Learning-The Future Is Here. Harris JD Arthroscopy; 2021 May; 37(5):1498-1502. PubMed ID: 33896503 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Algorithms Predict Functional Improvement After Hip Arthroscopy for Femoroacetabular Impingement Syndrome in Athletes. Kunze KN; Polce EM; Clapp I; Nwachukwu BU; Chahla J; Nho SJ J Bone Joint Surg Am; 2021 Jun; 103(12):1055-1062. PubMed ID: 33877058 [TBL] [Abstract][Full Text] [Related]
4. Editorial Commentary: Expansion of Hip Arthroscopy in Sports Medicine Fellowship Training: The Good, Bad, and Ugly. Matsuda DK Arthroscopy; 2021 Feb; 37(2):528-529. PubMed ID: 33546791 [TBL] [Abstract][Full Text] [Related]
5. Editorial Commentary: Predicting Satisfaction After Hip Arthroscopy Using Machine Learning: What Do Treadmills and Black Boxes Have to Do With Arthroscopy? Domb BG; Rosinsky PJ Arthroscopy; 2021 Apr; 37(4):1152-1154. PubMed ID: 33812519 [TBL] [Abstract][Full Text] [Related]
6. Editorial Commentary: Hip Arthroscopy-A Microcosm in the Evolution of Arthroscopy in Sports Medicine. Byrd JWT Arthroscopy; 2020 Mar; 36(3):773-775. PubMed ID: 32139055 [TBL] [Abstract][Full Text] [Related]
7. Personalized Medicine Using Predictive Analytics: A Machine Learning-Based Prognostic Model for Patients Undergoing Hip Arthroscopy. Domb BG; Ouyang VW; Go CC; Gornbein JA; Shapira J; Meghpara MB; Maldonado DR; Lall AC; Rosinsky PJ Am J Sports Med; 2022 Jun; 50(7):1900-1908. PubMed ID: 35536218 [TBL] [Abstract][Full Text] [Related]
8. Editorial Commentary: Rising Interest in "Big Data" in Arthroscopy: Is the Juice Worth the Squeeze? Pugely AJ; Bozic KJ Arthroscopy; 2017 Jan; 33(1):232-233. PubMed ID: 28003072 [TBL] [Abstract][Full Text] [Related]
9. Arthroscopic proficiency: a survey of orthopaedic sports medicine fellowship directors and orthopaedic surgery department chairs. O'Neill PJ; Cosgarea AJ; Freedman JA; Queale WS; McFarland EG Arthroscopy; 2002 Sep; 18(7):795-800. PubMed ID: 12209439 [TBL] [Abstract][Full Text] [Related]
10. Editorial Commentary: Machine Learning in Orthopaedics: Venturing Into the Valley of Despair. Wellington IJ; Cote MP Arthroscopy; 2022 Sep; 38(9):2767-2768. PubMed ID: 36064282 [TBL] [Abstract][Full Text] [Related]
11. Trends in Hip Arthroscopic Labral Repair: An American Board of Orthopaedic Surgery Database Study. Westermann RW; Day MA; Duchman KR; Glass NA; Lynch TS; Rosneck JT Arthroscopy; 2019 May; 35(5):1413-1419. PubMed ID: 30979629 [TBL] [Abstract][Full Text] [Related]
12. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
13. Who Is Performing Hip Arthroscopy?: An Analysis of the American Board of Orthopaedic Surgery Part-II Database. Duchman KR; Westermann RW; Glass NA; Bedard NA; Mather RC; Amendola A J Bone Joint Surg Am; 2017 Dec; 99(24):2103-2109. PubMed ID: 29257016 [TBL] [Abstract][Full Text] [Related]
14. Machine learning and conventional statistics: making sense of the differences. Ley C; Martin RK; Pareek A; Groll A; Seil R; Tischer T Knee Surg Sports Traumatol Arthrosc; 2022 Mar; 30(3):753-757. PubMed ID: 35106604 [TBL] [Abstract][Full Text] [Related]
15. Editorial Commentary: Arthrosomnology and the Solution to Coxalgia Somnia: Arthroscopic Hip Surgeons and Patients Increasingly Appreciate the Role of Sleep as Good Medicine. Harris JD Arthroscopy; 2021 Mar; 37(3):879-881. PubMed ID: 33673968 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning Algorithms Predict Prolonged Opioid Use in Opioid-Naïve Primary Hip Arthroscopy Patients. Kunze KN; Polce EM; Alter TD; Nho SJ J Am Acad Orthop Surg Glob Res Rev; 2021 May; 5(5):e21.00093-8. PubMed ID: 34032690 [TBL] [Abstract][Full Text] [Related]
17. Editorial Commentary: Hip Arthroscopy in a Military Population: Are the Results Comparable to an Athletic Population? Barlow BT Arthroscopy; 2018 Jul; 34(7):2102-2104. PubMed ID: 29976427 [TBL] [Abstract][Full Text] [Related]
19. Association Between Preoperative Patient Factors and Clinically Meaningful Outcomes After Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Machine Learning Analysis. Kunze KN; Polce EM; Clapp IM; Alter T; Nho SJ Am J Sports Med; 2022 Mar; 50(3):746-756. PubMed ID: 35006010 [TBL] [Abstract][Full Text] [Related]
20. Editorial Commentary: When Enough Is Enough-Orthopaedic Procedures With Long Learning Curves and the Case of Hip Arthroscopy. Matsuda DK Arthroscopy; 2019 May; 35(5):1420-1421. PubMed ID: 31054721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]