These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 35810009)
1. Phytohormone-like small biomolecules for microalgal biotechnology. Zhao Y; Ngo HH; Yu X Trends Biotechnol; 2022 Sep; 40(9):1025-1028. PubMed ID: 35810009 [TBL] [Abstract][Full Text] [Related]
2. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Lu Y; Xu J Trends Plant Sci; 2015 May; 20(5):273-282. PubMed ID: 25697753 [TBL] [Abstract][Full Text] [Related]
3. Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review. Yuan X; Gao X; Liu C; Liang W; Xue H; Li Z; Jin H Mar Drugs; 2023 Nov; 21(11):. PubMed ID: 37999418 [TBL] [Abstract][Full Text] [Related]
4. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782 [TBL] [Abstract][Full Text] [Related]
5. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Stirk WA; van Staden J Biotechnol Adv; 2020 Nov; 44():107612. PubMed ID: 32810563 [TBL] [Abstract][Full Text] [Related]
6. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. Zhao Y; Wang Q; Gu D; Huang F; Liu J; Yu L; Yu X Bioresour Technol; 2024 Feb; 393():130093. PubMed ID: 38000641 [TBL] [Abstract][Full Text] [Related]
7. Microalgal flocculation: Global research progress and prospects for algal biorefinery. Malik S; Khan F; Atta Z; Habib N; Haider MN; Wang N; Alam A; Jambi EJ; Gull M; Mehmood MA; Zhu H Biotechnol Appl Biochem; 2020 Jan; 67(1):52-60. PubMed ID: 31584208 [TBL] [Abstract][Full Text] [Related]
8. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850 [TBL] [Abstract][Full Text] [Related]
9. A Holistic Approach to Managing Microalgae for Biofuel Applications. Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737 [TBL] [Abstract][Full Text] [Related]
10. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Maurya R; Paliwal C; Ghosh T; Pancha I; Chokshi K; Mitra M; Ghosh A; Mishra S Bioresour Technol; 2016 Aug; 214():787-796. PubMed ID: 27161655 [TBL] [Abstract][Full Text] [Related]
11. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Tandon P; Jin Q; Huang L Microb Cell Fact; 2017 Nov; 16(1):219. PubMed ID: 29183381 [TBL] [Abstract][Full Text] [Related]
12. Methods of downstream processing for the production of biodiesel from microalgae. Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376 [TBL] [Abstract][Full Text] [Related]
13. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Mehariya S; Goswami RK; Karthikeysan OP; Verma P Chemosphere; 2021 Oct; 280():130553. PubMed ID: 33940454 [TBL] [Abstract][Full Text] [Related]
14. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Zhu J; Cai Y; Wakisaka M; Yang Z; Yin Y; Fang W; Xu Y; Omura T; Yu R; Zheng ALT Sci Total Environ; 2023 Oct; 896():165200. PubMed ID: 37400020 [TBL] [Abstract][Full Text] [Related]
15. [Trends of microalgal biotechnology: a view from bibliometrics]. Yang X; Wu Y; Yan J; Song H; Fan J; Li Y Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1415-36. PubMed ID: 26964332 [TBL] [Abstract][Full Text] [Related]
16. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936 [TBL] [Abstract][Full Text] [Related]
17. Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology. Lin H; Li Y; Hill RT Curr Opin Biotechnol; 2022 Feb; 73():300-307. PubMed ID: 34619482 [TBL] [Abstract][Full Text] [Related]
18. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress? Salama ES; Govindwar SP; Khandare RV; Roh HS; Jeon BH; Li X Trends Plant Sci; 2019 Jul; 24(7):611-624. PubMed ID: 31085124 [TBL] [Abstract][Full Text] [Related]
19. Advances in microalgal cell wall polysaccharides: a review focused on structure, production, and biological application. Colusse GA; Carneiro J; Duarte MER; Carvalho JC; Noseda MD Crit Rev Biotechnol; 2022 Jun; 42(4):562-577. PubMed ID: 34320897 [TBL] [Abstract][Full Text] [Related]
20. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]