BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35810216)

  • 21. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos.
    Keppeler D; Merino RM; Lopez de la Morena D; Bali B; Huet AT; Gehrt A; Wrobel C; Subramanian S; Dombrowski T; Wolf F; Rankovic V; Neef A; Moser T
    EMBO J; 2018 Dec; 37(24):. PubMed ID: 30396994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution.
    Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Palmateer A; Melkonian M; Cheng S; Carpenter E; Patterson J; Wong GK; Spudich JL
    mBio; 2021 Aug; 12(4):e0165621. PubMed ID: 34281394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetic Neuronal Silencing in Drosophila during Visual Processing.
    Mauss AS; Busch C; Borst A
    Sci Rep; 2017 Oct; 7(1):13823. PubMed ID: 29061981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomonas sulcata ACR1: A Fast Anion Channelrhodopsin.
    Govorunova EG; Sineshchekov OA; Spudich JL
    Photochem Photobiol; 2016 Mar; 92(2):257-263. PubMed ID: 26686819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1.
    Kim YS; Kato HE; Yamashita K; Ito S; Inoue K; Ramakrishnan C; Fenno LE; Evans KE; Paggi JM; Dror RO; Kandori H; Kobilka BK; Deisseroth K
    Nature; 2018 Sep; 561(7723):343-348. PubMed ID: 30158696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isospectral intermediates in the photochemical reaction cycle of anion channelrhodopsin GtACR1.
    Schleissner P; Szundi I; Chen E; Li H; Spudich JL; Kliger DS
    Biophys J; 2023 Oct; 122(20):4091-4103. PubMed ID: 37749886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blue Light Increases Neuronal Activity-Regulated Gene Expression in the Absence of Optogenetic Proteins.
    Tyssowski KM; Gray JM
    eNeuro; 2019; 6(5):. PubMed ID: 31444226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Targeting-Optimized Chronos for Stimulation of the Auditory Pathway.
    Huet AT; Rankovic V
    Methods Mol Biol; 2021; 2191():261-285. PubMed ID: 32865750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WiChR, a highly potassium-selective channelrhodopsin for low-light one- and two-photon inhibition of excitable cells.
    Vierock J; Shiewer E; Grimm C; Rozenberg A; Chen IW; Tillert L; Castro Scalise AG; Casini M; Augustin S; Tanese D; Forget BC; Peyronnet R; Schneider-Warme F; Emiliani V; Béjà O; Hegemann P
    Sci Adv; 2022 Dec; 8(49):eadd7729. PubMed ID: 36383037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic Methods for the Study of Circadian Rhythms.
    Jones JR; Tackenberg MC; McMahon DG
    Methods Mol Biol; 2021; 2130():325-336. PubMed ID: 33284455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photochemical reaction cycle transitions during anion channelrhodopsin gating.
    Sineshchekov OA; Li H; Govorunova EG; Spudich JL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):E1993-2000. PubMed ID: 27001860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 36. Current Topics of Optogenetics for Medical Applications Toward Therapy.
    Kushibiki T
    Adv Exp Med Biol; 2021; 1293():513-521. PubMed ID: 33398838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic inhibition of behavior with anion channelrhodopsins.
    Mohammad F; Stewart JC; Ott S; Chlebikova K; Chua JY; Koh TW; Ho J; Claridge-Chang A
    Nat Methods; 2017 Mar; 14(3):271-274. PubMed ID: 28114289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins.
    Mohamed GA; Cheng RK; Ho J; Krishnan S; Mohammad F; Claridge-Chang A; Jesuthasan S
    BMC Biol; 2017 Nov; 15(1):103. PubMed ID: 29100505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spotlighted Brains: Optogenetic Activation and Silencing of Neurons.
    Kianianmomeni A; Hallmann A
    Trends Biochem Sci; 2015 Nov; 40(11):624-627. PubMed ID: 26433473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green-Sensitive, Long-Lived, Step-Functional Anion Channelrhodopsin-2 Variant as a High-Potential Neural Silencing Tool.
    Kojima K; Miyoshi N; Shibukawa A; Chowdhury S; Tsujimura M; Noji T; Ishikita H; Yamanaka A; Sudo Y
    J Phys Chem Lett; 2020 Aug; 11(15):6214-6218. PubMed ID: 32697087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.