These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 35810515)
1. Toward emerging contaminants removal using acclimated activated sludge in the gravity-driven membrane filtration system. Chen R; Hu L; Zhang H; Lin D; Wang J; Xu D; Gong W; Liang H J Hazard Mater; 2022 Sep; 438():129541. PubMed ID: 35810515 [TBL] [Abstract][Full Text] [Related]
2. Insight into the role of biogenic manganese oxides-assisted gravity-driven membrane filtration systems toward emerging contaminants removal. Chen R; Zhang H; Wang J; Xu D; Tang X; Gong W; Liang H Water Res; 2022 Oct; 224():119111. PubMed ID: 36122447 [TBL] [Abstract][Full Text] [Related]
3. Characterization of pure cultures isolated from sulfamethoxazole-acclimated activated sludge with respect to taxonomic identification and sulfamethoxazole biodegradation potential. Herzog B; Lemmer H; Horn H; Müller E BMC Microbiol; 2013 Dec; 13():276. PubMed ID: 24289789 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of sulfamethoxazole by individual and mixed bacteria. Larcher S; Yargeau V Appl Microbiol Biotechnol; 2011 Jul; 91(1):211-8. PubMed ID: 21499763 [TBL] [Abstract][Full Text] [Related]
5. Bio-degraded of sulfamethoxazole by microbial consortia without addition nutrients: Mineralization, nitrogen removal, and proteomic characterization. He Y; Liu L; Wang Q; Dong X; Huang J; Jia X; Peng X J Hazard Mater; 2024 Mar; 466():133558. PubMed ID: 38262313 [TBL] [Abstract][Full Text] [Related]
6. Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. Yan R; Wang Y; Li J; Wang X; Wang Y J Hazard Mater; 2022 Mar; 425():127764. PubMed ID: 34799165 [TBL] [Abstract][Full Text] [Related]
7. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. Effects of sulfamethoxazole on aerobic sludge granulation process. Cui D; Wei N; Ling N; Zheng G; Sun Y; Chen Z; Zou X; Deng H; Li W J Appl Microbiol; 2022 Feb; 132(2):1091-1103. PubMed ID: 34453874 [TBL] [Abstract][Full Text] [Related]
9. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system. Jia Y; Khanal SK; Zhang H; Chen GH; Lu H Water Res; 2017 Aug; 119():12-20. PubMed ID: 28433879 [TBL] [Abstract][Full Text] [Related]
10. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Müller E; Schüssler W; Horn H; Lemmer H Chemosphere; 2013 Aug; 92(8):969-78. PubMed ID: 23611245 [TBL] [Abstract][Full Text] [Related]
11. Presence of powdered activated carbon/zeolite layer on the performances of gravity-driven membrane (GDM) system for drinking water treatment: Ammonia removal and flux stabilization. Ding A; Song R; Cui H; Cao H; Ngo HH; Chang H; Nan J; Li G; Ma J Sci Total Environ; 2021 Dec; 799():149415. PubMed ID: 34364273 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic degradation of sulfamethoxazole by mixed cultures from swine and sewage sludge. Fan CH; Yang CW; Chang BV Environ Technol; 2019 Jan; 40(2):210-218. PubMed ID: 28942703 [TBL] [Abstract][Full Text] [Related]
13. Microbial degradation of sulfamethoxazole in the environment. Wang J; Wang S Appl Microbiol Biotechnol; 2018 Apr; 102(8):3573-3582. PubMed ID: 29516143 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation and toxicity of melamine at high activated sludge concentrations in a membrane bioreactor. Xu S; Sun M; Thompson A; Hu Z Water Sci Technol; 2018 Feb; 77(3-4):979-987. PubMed ID: 29488961 [TBL] [Abstract][Full Text] [Related]
15. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Yang SF; Lin CF; Lin AY; Hong PK Water Res; 2011 May; 45(11):3389-97. PubMed ID: 21529876 [TBL] [Abstract][Full Text] [Related]
16. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Baumgarten B; Jährig J; Reemtsma T; Jekel M Water Res; 2011 Jan; 45(1):211-20. PubMed ID: 20828781 [TBL] [Abstract][Full Text] [Related]
17. Sulfamethoxazole Enhances Specific Enzymatic Activities under Aerobic Heterotrophic Conditions: A Metaproteomic Approach. Kennes-Veiga DM; Trueba-Santiso A; Gallardo-Garay V; Balboa S; Carballa M; Lema JM Environ Sci Technol; 2022 Sep; 56(18):13152-13159. PubMed ID: 36073795 [TBL] [Abstract][Full Text] [Related]
18. Motivation of reactive oxygen and nitrogen species by a novel non-thermal plasma coupled with calcium peroxide system for synergistic removal of sulfamethoxazole in waste activated sludge. Zhang A; Zhou Y; Li Y; Liu Y; Li X; Xue G; Miruka AC; Zheng M; Liu Y Water Res; 2022 Apr; 212():118128. PubMed ID: 35131628 [TBL] [Abstract][Full Text] [Related]
19. Efficient degradation of sulfamethoxazole by catalytic wet peroxide oxidation with sludge-derived carbon as catalysts. Yu Y; Huang F; He Y; Wang F; Lv Y; Xu Y; Zhang Y Environ Technol; 2020 Mar; 41(7):870-877. PubMed ID: 30139300 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation and metabolic pathway of sulfamethoxazole by Sphingobacterium mizutaii. Song J; Hao G; Liu L; Zhang H; Zhao D; Li X; Yang Z; Xu J; Ruan Z; Mu Y Sci Rep; 2021 Nov; 11(1):23130. PubMed ID: 34848765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]