These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35810874)

  • 1. Optimization of dissolution and fermentation acid production of rhamnolipid-alkali-heat synergistic pretreatment of sludge.
    Hao S; Yuling L; Penghe Z; Yang J
    Chemosphere; 2022 Nov; 306():135607. PubMed ID: 35810874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the characteristics of dissolution and acid production in waste activated sludge: Focusing on the pretreatment of thermal-alkali with rhamnolipid.
    Zhao P; Liu Y; Dou C; Zhu N; Wan P; Wang X
    Bioresour Technol; 2021 May; 327():124796. PubMed ID: 33561792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of short-chain fatty acids from sludge by thermal hydrolysis and acidogenic fermentation for organic resource recovery.
    Wen L; Huang XW; Li XY
    Sci Total Environ; 2022 Jul; 828():154389. PubMed ID: 35276155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Dissolution Characteristics of Excess Sludge by Low-Temperature Thermal Hydrolysis and Acid Production by Fermentation.
    Penghe Z; Yuling L; Chuanchuan D; Pengliang W
    ACS Omega; 2020 Oct; 5(40):26101-26109. PubMed ID: 33073137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant rhamnolipid promotes anaerobic codigestion of excess sludge and plant waste.
    Wang Y; Zhou X; Dai B; Zhu X
    Water Sci Technol; 2021 Nov; 84(9):2519-2529. PubMed ID: 34810328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing temperature for enhancing waste activated sludge decomposition in lysozyme and rhamnolipid pretreatment system.
    Li X; Xie H; Liu G; Zhang R; Ma X; Chen H
    Bioresour Technol; 2021 Dec; 341():125868. PubMed ID: 34523578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of rhamnolipid pretreatment on DOM dissolution characteristics and anaerobic fermentation acid production of waste activated sludge.
    Dou C; Liu Y; Li S; Sun R; Zhao P
    Environ Technol; 2024 Feb; 45(6):1203-1214. PubMed ID: 36269674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced volatile fatty acid production from excess sludge by combined free nitrous acid and rhamnolipid treatment.
    Wu QL; Guo WQ; Bao X; Zheng HS; Yin RL; Feng XC; Luo HC; Ren NQ
    Bioresour Technol; 2017 Jan; 224():727-732. PubMed ID: 27865665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhamnolipid increases H
    Fu Q; Liu X; He D; Li X; Li C; Du M; Wang Y; Long S; Wang D
    Water Res; 2022 Aug; 221():118742. PubMed ID: 35752095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis and decomposition of waste activated sludge with combined lysozyme and rhamnolipid treatment: Effect of pH.
    Liu G; Li X; Ma X; Ma L; Chen H
    Bioresour Technol; 2019 Dec; 293():122074. PubMed ID: 31491652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid.
    Xu Q; Liu X; Fu Y; Li Y; Wang D; Wang Q; Liu Y; An H; Zhao J; Wu Y; Li X; Yang Q; Zeng G
    Bioresour Technol; 2018 Nov; 267():141-148. PubMed ID: 30014992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge.
    Li X; Sui K; Zhang J; Liu X; Xu Q; Wang D; Yang Q
    Sci Total Environ; 2022 Feb; 806(Pt 1):150347. PubMed ID: 34563898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process optimization and effect of thermal, alkaline, H
    Siami S; Aminzadeh B; Karimi R; Hallaji SM
    BMC Biotechnol; 2020 May; 20(1):21. PubMed ID: 32375744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.
    Zhang Y; Feng Y; Quan X
    Waste Manag; 2015 Apr; 38():297-302. PubMed ID: 25681947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of alkaline hydrothermal pretreatment of biological sludge for enhanced methane generation under anaerobic conditions.
    Perendeci NA; Ciggin AS; Kökdemir Ünşar E; Orhon D
    Waste Manag; 2020 Apr; 107():9-19. PubMed ID: 32248068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipid pretreatment enhances methane production from two-phase anaerobic digestion of waste activated sludge.
    Xu Q; Luo TY; Wu RL; Wei W; Sun J; Dai X; Ni BJ
    Water Res; 2021 Apr; 194():116909. PubMed ID: 33609905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced deflocculation of dehydrated sludge by rhamnolipid treatment coupled with thermal hydrolysis.
    Wee GN; Han I; Lee TK
    Waste Manag; 2020 Jun; 110():66-73. PubMed ID: 32460106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge.
    Zhang Y; Xu S; Cui M; Wong JWC
    Waste Manag; 2019 Jul; 94():68-76. PubMed ID: 31279397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hydrolysis and acidification of waste activated sludge by biosurfactant rhamnolipid.
    Yi X; Luo K; Yang Q; Li XM; Deng WG; Cheng HB; Wang ZL; Zeng GM
    Appl Biochem Biotechnol; 2013 Nov; 171(6):1416-28. PubMed ID: 23955350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment.
    Kang JH; Kim D; Lee TJ
    Bioresour Technol; 2012 Apr; 109():239-43. PubMed ID: 22306077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.