These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A clinical text classification paradigm using weak supervision and deep representation. Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584 [TBL] [Abstract][Full Text] [Related]
3. A study of deep learning methods for de-identification of clinical notes in cross-institute settings. Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524 [TBL] [Abstract][Full Text] [Related]
4. An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing: Algorithm Development and Validation Study. Sivarajkumar S; Kelley M; Samolyk-Mazzanti A; Visweswaran S; Wang Y JMIR Med Inform; 2024 Apr; 12():e55318. PubMed ID: 38587879 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
6. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
7. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
8. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Uzuner Ö; South BR; Shen S; DuVall SL J Am Med Inform Assoc; 2011; 18(5):552-6. PubMed ID: 21685143 [TBL] [Abstract][Full Text] [Related]
9. Few-Shot Learning for Clinical Natural Language Processing Using Siamese Neural Networks: Algorithm Development and Validation Study. Oniani D; Chandrasekar P; Sivarajkumar S; Wang Y JMIR AI; 2023 May; 2():e44293. PubMed ID: 38875537 [TBL] [Abstract][Full Text] [Related]
10. Model tuning or prompt Tuning? a study of large language models for clinical concept and relation extraction. Peng C; Yang X; Smith KE; Yu Z; Chen A; Bian J; Wu Y J Biomed Inform; 2024 May; 153():104630. PubMed ID: 38548007 [TBL] [Abstract][Full Text] [Related]
11. Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries. Xu Y; Hong K; Tsujii J; Chang EI J Am Med Inform Assoc; 2012; 19(5):824-32. PubMed ID: 22586067 [TBL] [Abstract][Full Text] [Related]
12. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries. Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801 [TBL] [Abstract][Full Text] [Related]
13. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
14. HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural Language Processing. Sivarajkumar S; Wang Y AMIA Annu Symp Proc; 2022; 2022():972-981. PubMed ID: 37128372 [TBL] [Abstract][Full Text] [Related]
15. Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition. Zuo X; Kumar A; Shen S; Li J; Cong G; Jin E; Chen Q; Warner JL; Yang P; Xu H JCO Clin Cancer Inform; 2024 Jun; 8():e2300166. PubMed ID: 38885475 [TBL] [Abstract][Full Text] [Related]
16. Identifying signs and symptoms of urinary tract infection from emergency department clinical notes using large language models. Iscoe M; Socrates V; Gilson A; Chi L; Li H; Huang T; Kearns T; Perkins R; Khandjian L; Taylor RA Acad Emerg Med; 2024 Jun; 31(6):599-610. PubMed ID: 38567658 [TBL] [Abstract][Full Text] [Related]
17. MITRE system for clinical assertion status classification. Clark C; Aberdeen J; Coarr M; Tresner-Kirsch D; Wellner B; Yeh A; Hirschman L J Am Med Inform Assoc; 2011; 18(5):563-7. PubMed ID: 21515542 [TBL] [Abstract][Full Text] [Related]
18. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
19. Identification of Preanesthetic History Elements by a Natural Language Processing Engine. Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317 [TBL] [Abstract][Full Text] [Related]
20. Identification of patients' smoking status using an explainable AI approach: a Danish electronic health records case study. Ebrahimi A; Henriksen MBH; Brasen CL; Hilberg O; Hansen TF; Jensen LH; Peimankar A; Wiil UK BMC Med Res Methodol; 2024 May; 24(1):114. PubMed ID: 38760718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]