These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35811026)
41. Few-shot learning for medical text: A review of advances, trends, and opportunities. Ge Y; Guo Y; Das S; Al-Garadi MA; Sarker A J Biomed Inform; 2023 Aug; 144():104458. PubMed ID: 37488023 [TBL] [Abstract][Full Text] [Related]
42. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
43. Integrating machine learning with linguistic features: A universal method for extraction and normalization of temporal expressions in Chinese texts. Wang S; Li R; Wu H Comput Methods Programs Biomed; 2023 May; 233():107474. PubMed ID: 36931017 [TBL] [Abstract][Full Text] [Related]
44. Clinical named entity recognition and relation extraction using natural language processing of medical free text: A systematic review. Fraile Navarro D; Ijaz K; Rezazadegan D; Rahimi-Ardabili H; Dras M; Coiera E; Berkovsky S Int J Med Inform; 2023 Sep; 177():105122. PubMed ID: 37295138 [TBL] [Abstract][Full Text] [Related]
45. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
46. Med7: A transferable clinical natural language processing model for electronic health records. Kormilitzin A; Vaci N; Liu Q; Nevado-Holgado A Artif Intell Med; 2021 Aug; 118():102086. PubMed ID: 34412834 [TBL] [Abstract][Full Text] [Related]
47. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records. Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734 [TBL] [Abstract][Full Text] [Related]
48. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification. Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729 [TBL] [Abstract][Full Text] [Related]
49. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation. Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631 [TBL] [Abstract][Full Text] [Related]
50. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related]
51. Extracting adverse drug events from clinical Notes: A systematic review of approaches used. Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081 [TBL] [Abstract][Full Text] [Related]
52. Negation and speculation processing: A study on cue-scope labelling and assertion classification in Spanish clinical text. Perez N; Cuadros M; Rigau G Artif Intell Med; 2023 Nov; 145():102682. PubMed ID: 37925211 [TBL] [Abstract][Full Text] [Related]
53. Extracting medication information from unstructured public health data: a demonstration on data from population-based and tertiary-based samples. Chen R; Ho JC; Lin JS BMC Med Res Methodol; 2020 Oct; 20(1):258. PubMed ID: 33059588 [TBL] [Abstract][Full Text] [Related]
54. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207 [TBL] [Abstract][Full Text] [Related]
55. NEAR: Named entity and attribute recognition of clinical concepts. Nath N; Lee SH; Lee I J Biomed Inform; 2022 Jun; 130():104092. PubMed ID: 35533990 [TBL] [Abstract][Full Text] [Related]
56. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. Patrick J; Li M J Am Med Inform Assoc; 2010; 17(5):524-7. PubMed ID: 20819856 [TBL] [Abstract][Full Text] [Related]
57. A flexible framework for deriving assertions from electronic medical records. Roberts K; Harabagiu SM J Am Med Inform Assoc; 2011; 18(5):568-73. PubMed ID: 21724741 [TBL] [Abstract][Full Text] [Related]
58. Generating real-world evidence from unstructured clinical notes to examine clinical utility of genetic tests: use case in BRCAness. Zhao Y; Weroha SJ; Goode EL; Liu H; Wang C BMC Med Inform Decis Mak; 2021 Jan; 21(1):3. PubMed ID: 33407429 [TBL] [Abstract][Full Text] [Related]
59. An Accurate Deep Learning Model for Clinical Entity Recognition From Clinical Notes. Moqurrab SA; Ayub U; Anjum A; Asghar S; Srivastava G IEEE J Biomed Health Inform; 2021 Oct; 25(10):3804-3811. PubMed ID: 34310332 [TBL] [Abstract][Full Text] [Related]
60. A knowledge discovery and reuse pipeline for information extraction in clinical notes. Patrick JD; Nguyen DH; Wang Y; Li M J Am Med Inform Assoc; 2011; 18(5):574-9. PubMed ID: 21737844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]