These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 358112)

  • 81. Early versus late introduction of continuous negative pressure in the management of the idiopathic respiratory distress syndrome.
    Gerard P; Fox WW; Outerbridge EW; Beaudry PH
    J Pediatr; 1975 Oct; 87(4):591-5. PubMed ID: 1099184
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [The use of two nitrogen-washout tests as an indication for treatment of hyaline membrane disease with nasal-CPAP].
    Müller WD; Rosegger H; Haidvogl M
    Monatsschr Kinderheilkd (1902); 1978 Sep; 126(9):565-71. PubMed ID: 357955
    [No Abstract]   [Full Text] [Related]  

  • 83. Lung mechanics and airway reactivity in sheep during development of oxygen toxicity.
    Fukushima M; King LS; Kang KH; Banerjee M; Newman JH
    J Appl Physiol (1985); 1990 Nov; 69(5):1779-85. PubMed ID: 2272971
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Spirometry with positive airway pressure. A simple method of evaluating obstructive lung disease in children.
    Motoyama EK; Hen J; Tamas L; Dolan TF
    Am Rev Respir Dis; 1982 Nov; 126(5):766-70. PubMed ID: 6756232
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Nasopharyngeal ventilation in respiratory distress syndrome. A simple and efficient method of delivering continuous positive airway pressure.
    Novogroder M; MacKuanying N; Eidelman AI; Gartner LM
    J Pediatr; 1973 Jun; 82(6):1059-62. PubMed ID: 4573988
    [No Abstract]   [Full Text] [Related]  

  • 86. Pulmonary physiotherapy in neonates: physiologic changes and respiratory management.
    Fox WW; Schwartz JG; Shaffer TH
    J Pediatr; 1978 Jun; 92(6):977-81. PubMed ID: 660372
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Continuous postive airways pressure treatment by a face chamber in idiopathic respiratory distress syndrome.
    Ahlström H; Jonson B; Svenningsen NW
    Arch Dis Child; 1976 Jan; 51(1):13-21. PubMed ID: 782373
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Automated nitrogen-washout methods for infants: evaluated using cats and a mechanical lung.
    Richardson R; Anderson M
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1378-82. PubMed ID: 7047475
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Early measurement of lung volume--a useful discriminator of neonatal respiratory failure severity.
    Dimitriou G; Greenough A; Kavadia V
    Physiol Meas; 1996 Feb; 17(1):37-42. PubMed ID: 8746375
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Inadvertent positive end-expiratory pressure during mechanical ventilation.
    Bancalari E
    J Pediatr; 1986 Apr; 108(4):567-9. PubMed ID: 3083077
    [No Abstract]   [Full Text] [Related]  

  • 91. Infantile lobar hyperinflation: expectant treatment.
    Shannon DC; Todres ID; Moylan FM
    Pediatrics; 1977 Jun; 59 Suppl(6 Pt 2):1012-8. PubMed ID: 325490
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Pulmonary follow-up of moderately low birth weight infants with and without respiratory distress syndrome.
    Mansell AL; Driscoll JM; James LS
    J Pediatr; 1987 Jan; 110(1):111-5. PubMed ID: 3641904
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Individualised continuous distending pressure applied within 6 hours of delivery in infants with respiratory distress syndrome.
    Tanswell AK; Clubb RA; Smith BT; Boston RW
    Arch Dis Child; 1980 Jan; 55(1):33-9. PubMed ID: 6769397
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Higher CPAP levels improve functional residual capacity at birth in preterm rabbits.
    Martherus T; Croughan MK; Crossley KJ; Wallace MJ; McGillick EV; Thio M; Roehr CC; Pearson JT; Lee K; Ruben G; Kitchen MJ; Te Pas AB; Hooper SB
    Pediatr Res; 2022 Jun; 91(7):1686-1694. PubMed ID: 34294868
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Functional residual capacity and ventilatory pressures during positive-pressure ventilation at high frequencies.
    Jonzon A; Rondio Z; Sedin G
    Br J Anaesth; 1980 Apr; 52(4):395-402. PubMed ID: 6769451
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The effects of feeding on arterial blood gases and lung mechanics in newborn infants recovering from respiratory disease.
    Patel BD; Dinwiddie R; Kumar SP; Fox WW
    J Pediatr; 1977 Mar; 90(3):435-8. PubMed ID: 14240
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effect of lung volume on expiratory time in the newborn infant.
    Martin RJ; Okken A; Katona PG; Klaus MH
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Jul; 45(1):18-23. PubMed ID: 353009
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nasal CPAP employing a jet device for creating positive pressure.
    Theilade D
    Intensive Care Med; 1978 Jul; 4(3):145-8. PubMed ID: 357464
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Anesthesia in newborn and infants].
    Gabriel A; Zimpfer M
    Anaesthesist; 2004 Aug; 53(8):688-9. PubMed ID: 15316644
    [No Abstract]   [Full Text] [Related]  

  • 100. Prevention of obstruction of nasopharyngeal CPAP tubes by adequate humidification of inspired gases.
    Pollett HF; Reid WD
    Can Anaesth Soc J; 1977 Sep; 24(5):615-7. PubMed ID: 332286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.