These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35811691)

  • 1. Prediction and Risk Stratification of Cardiovascular Disease in Diabetic Kidney Disease Patients.
    Ren J; Liu D; Li G; Duan J; Dong J; Liu Z
    Front Cardiovasc Med; 2022; 9():923549. PubMed ID: 35811691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.
    Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC
    Front Oncol; 2023; 13():1106029. PubMed ID: 37007095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease.
    Zhu H; Qiao S; Zhao D; Wang K; Wang B; Niu Y; Shang S; Dong Z; Zhang W; Zheng Y; Chen X
    Front Endocrinol (Lausanne); 2024; 15():1390729. PubMed ID: 38863928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study.
    Zeng J; Li K; Cao F; Zheng Y
    Front Oncol; 2023; 13():1131859. PubMed ID: 36959782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data.
    Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L
    Comput Biol Med; 2024 Sep; 182():109185. PubMed ID: 39341114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and External Validation of Machine Learning Models for Diabetic Microvascular Complications: Cross-Sectional Study With Metabolites.
    He F; Ng Yin Ling C; Nusinovici S; Cheng CY; Wong TY; Li J; Sabanayagam C
    J Med Internet Res; 2024 Mar; 26():e41065. PubMed ID: 38546730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China.
    Li X; Yang Z; Li J; Wang G; Sun A; Wang Y; Zhang W; Liu Y; Lei H
    Heliyon; 2024 Jun; 10(12):e32788. PubMed ID: 39022101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.
    Zou Y; Zhao L; Zhang J; Wang Y; Wu Y; Ren H; Wang T; Zhang R; Wang J; Zhao Y; Qin C; Xu H; Li L; Chai Z; Cooper ME; Tong N; Liu F
    Ren Fail; 2022 Dec; 44(1):562-570. PubMed ID: 35373711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis.
    Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y
    Front Oncol; 2022; 12():967758. PubMed ID: 36072795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: a multicenter retrospective study.
    Liu XZ; Duan M; Huang HD; Zhang Y; Xiang TY; Niu WC; Zhou B; Wang HL; Zhang TT
    Front Endocrinol (Lausanne); 2023; 14():1184190. PubMed ID: 37469989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of novel interpretable survival prediction models based on drug exposures for severe heart failure during vulnerable period.
    Guo Y; Yu F; Jiang FF; Yin SJ; Jiang MH; Li YJ; Yang HY; Chen LR; Cai WK; He GH
    J Transl Med; 2024 Aug; 22(1):743. PubMed ID: 39107765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study.
    Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM
    PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk factors associated with major adverse cardiac and cerebrovascular events following percutaneous coronary intervention: a 10-year follow-up comparing random survival forest and Cox proportional-hazards model.
    Farhadian M; Dehdar Karsidani S; Mozayanimonfared A; Mahjub H
    BMC Cardiovasc Disord; 2021 Jan; 21(1):38. PubMed ID: 33461487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
    Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M
    PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Driven Prediction of Comorbidities and Mortality in Adults With Type 1 Diabetes.
    Andersen JD; Stoltenberg CW; Jensen MH; Vestergaard P; Hejlesen O; Hangaard S
    J Diabetes Sci Technol; 2024 Aug; ():19322968241267779. PubMed ID: 39091237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based prediction of 1-year mortality for acute coronary syndrome
    Hadanny A; Shouval R; Wu J; Gale CP; Unger R; Zahger D; Gottlieb S; Matetzky S; Goldenberg I; Beigel R; Iakobishvili Z
    J Cardiol; 2022 Mar; 79(3):342-351. PubMed ID: 34857429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning predictions of the adverse events of different treatments in patients with ischemic left ventricular systolic dysfunction.
    Chen W; Liu J; Shi Y
    Intern Emerg Med; 2024 Oct; 19(7):1847-1857. PubMed ID: 38874880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database.
    Jiang C; Wang K; Yan L; Yao H; Shi H; Lin R
    Cancer Med; 2023 Jun; 12(11):12413-12424. PubMed ID: 37165971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting overall survival in chordoma patients using machine learning models: a web-app application.
    Cheng P; Xie X; Knoedler S; Mi B; Liu G
    J Orthop Surg Res; 2023 Sep; 18(1):652. PubMed ID: 37660044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cardiovascular Disease Prediction Model Based on Routine Physical Examination Indicators Using Machine Learning Methods: A Cohort Study.
    Qian X; Li Y; Zhang X; Guo H; He J; Wang X; Yan Y; Ma J; Ma R; Guo S
    Front Cardiovasc Med; 2022; 9():854287. PubMed ID: 35783868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.