These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35811789)

  • 41. An electrophysiological assessment of distractor suppression in visual search tasks.
    Mazza V; Turatto M; Caramazza A
    Psychophysiology; 2009 Jul; 46(4):771-5. PubMed ID: 19490518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. P
    Drisdelle BL; Eimer M
    Psychophysiology; 2021 Sep; 58(9):e13878. PubMed ID: 34110022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surprisingly inflexible: Statistically learned suppression of distractors generalizes across contexts.
    de Waard J; Bogaerts L; van Moorselaar D; Theeuwes J
    Atten Percept Psychophys; 2022 Feb; 84(2):459-473. PubMed ID: 34862588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tracking Neural Markers of Template Formation and Implementation in Attentional Inhibition under Different Distractor Consistency.
    Wen 文雯 W; Huang 黄志邦 Z; Hou 侯寅 Y; Li 李晟 S
    J Neurosci; 2022 Jun; 42(24):4927-4936. PubMed ID: 35545435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Eye movements reveal the contributions of early and late processes of enhancement and suppression to the guidance of visual search.
    Hamblin-Frohman Z; Chang S; Egeth H; Becker SI
    Atten Percept Psychophys; 2022 Aug; 84(6):1913-1924. PubMed ID: 35859034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial filtering restricts the attentional window during both singleton and feature-based visual search.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2020 Jul; 82(5):2360-2378. PubMed ID: 31993978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Statistical regularities modulate attentional capture.
    Wang B; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):13-17. PubMed ID: 29309194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner.
    Foerster RM; Schneider WX
    Cognition; 2018 Mar; 172():37-45. PubMed ID: 29223864
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Top-down and bottom-up attentional control: on the nature of interference from a salient distractor.
    Kim MS; Cave KR
    Percept Psychophys; 1999 Aug; 61(6):1009-23. PubMed ID: 10497423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bottom-up attention capture with distractor and target singletons defined in the same (color) dimension is not a matter of feature uncertainty.
    Weichselbaum H; Ansorge U
    Atten Percept Psychophys; 2018 Aug; 80(6):1350-1361. PubMed ID: 29777515
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expectations and perceptual priming in a visual search task: Evidence from eye movements and behavior.
    Shurygina O; Kristjánsson Á; Tudge L; Chetverikov A
    J Exp Psychol Hum Percept Perform; 2019 Apr; 45(4):489-499. PubMed ID: 30816788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Target uncertainty does not lead to more distraction by singletons: intertrial priming does.
    Pinto Y; Olivers CN; Theeuwes J
    Percept Psychophys; 2005 Nov; 67(8):1354-61. PubMed ID: 16555587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Target enhancement and distractor inhibition affect transitory surround suppression in dual tasks using multiple rapid serial visual presentation streams.
    Wu X; Greenwood P; Fu S
    Q J Exp Psychol (Hove); 2016; 69(9):1777-98. PubMed ID: 26447933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distractor suppression leads to reduced flanker interference.
    Ivanov Y; Theeuwes J
    Atten Percept Psychophys; 2021 Feb; 83(2):624-636. PubMed ID: 33269439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Attentional selection by distractor suppression.
    Caputo G; Guerra S
    Vision Res; 1998 Mar; 38(5):669-89. PubMed ID: 9604099
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects.
    Kristjánsson A; Sigurjónsdóttir O; Driver J
    Atten Percept Psychophys; 2010 Jul; 72(5):1229-36. PubMed ID: 20601703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for attentional capture by a surprising color singleton in visual search.
    Horstmann G
    Psychol Sci; 2002 Nov; 13(6):499-505. PubMed ID: 12430832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Attentional and oculomotor capture with static singletons.
    Theeuwes J; De Vries GJ; Godijn R
    Percept Psychophys; 2003 Jul; 65(5):735-46. PubMed ID: 12956581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. When age is irrelevant: distractor inhibition and target activation in priming of pop-out.
    Wnuczko M; Pratt J; Hasher L; Walker R
    J Gerontol B Psychol Sci Soc Sci; 2012 May; 67(3):325-30. PubMed ID: 22082524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.