These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Re-examination of two diatom reference genomes using long-read sequencing. Filloramo GV; Curtis BA; Blanche E; Archibald JM BMC Genomics; 2021 May; 22(1):379. PubMed ID: 34030633 [TBL] [Abstract][Full Text] [Related]
3. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum. Slattery SS; Diamond A; Wang H; Therrien JA; Lant JT; Jazey T; Lee K; Klassen Z; Desgagné-Penix I; Karas BJ; Edgell DR ACS Synth Biol; 2018 Feb; 7(2):328-338. PubMed ID: 29298053 [TBL] [Abstract][Full Text] [Related]
4. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Rautiainen M; Nurk S; Walenz BP; Logsdon GA; Porubsky D; Rhie A; Eichler EE; Phillippy AM; Koren S Nat Biotechnol; 2023 Oct; 41(10):1474-1482. PubMed ID: 36797493 [TBL] [Abstract][Full Text] [Related]
5. Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing. Bliznina A; Masunaga A; Mansfield MJ; Tan Y; Liu AW; West C; Rustagi T; Chien HC; Kumar S; Pichon J; Plessy C; Luscombe NM BMC Genomics; 2021 Mar; 22(1):222. PubMed ID: 33781200 [TBL] [Abstract][Full Text] [Related]
6. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline. Yang M; Lin X; Liu X; Zhang J; Ge F Mol Plant; 2018 Oct; 11(10):1292-1307. PubMed ID: 30176371 [TBL] [Abstract][Full Text] [Related]
7. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis. Baeza JA; García-De León FJ BMC Genomics; 2022 Apr; 23(1):320. PubMed ID: 35459089 [TBL] [Abstract][Full Text] [Related]
8. PhaeoEpiView: an epigenome browser of the newly assembled genome of the model diatom Phaeodactylum tricornutum. Wu Y; Chaumier T; Manirakiza E; Veluchamy A; Tirichine L Sci Rep; 2023 May; 13(1):8320. PubMed ID: 37221245 [TBL] [Abstract][Full Text] [Related]
9. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. Russo MT; Rogato A; Jaubert M; Karas BJ; Falciatore A J Phycol; 2023 Dec; 59(6):1114-1122. PubMed ID: 37975560 [TBL] [Abstract][Full Text] [Related]
10. Extrachromosomal Genetic Engineering of the Marine Diatom Fabris M; George J; Kuzhiumparambil U; Lawson CA; Jaramillo-Madrid AC; Abbriano RM; Vickers CE; Ralph P ACS Synth Biol; 2020 Mar; 9(3):598-612. PubMed ID: 32032487 [TBL] [Abstract][Full Text] [Related]
11. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Siaut M; Heijde M; Mangogna M; Montsant A; Coesel S; Allen A; Manfredonia A; Falciatore A; Bowler C Gene; 2007 Dec; 406(1-2):23-35. PubMed ID: 17658702 [TBL] [Abstract][Full Text] [Related]
12. Mobilization of a diatom mutator-like element (MULE) transposon inactivates the uridine monophosphate synthase (UMPS) locus in Phaeodactylum tricornutum. Abbriano RM; George J; Kahlke T; Commault AS; Fabris M Plant J; 2023 Aug; 115(4):926-936. PubMed ID: 37147901 [TBL] [Abstract][Full Text] [Related]
13. Chromosome-Scale Genome Assembly of the Marine Oleaginous Diatom Fistulifera solaris. Maeda Y; Kobayashi R; Watanabe K; Yoshino T; Bowler C; Matsumoto M; Tanaka T Mar Biotechnol (NY); 2022 Aug; 24(4):788-800. PubMed ID: 35915286 [TBL] [Abstract][Full Text] [Related]
14. Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Oudot-Le Secq MP; Green BR Gene; 2011 May; 476(1-2):20-6. PubMed ID: 21320580 [TBL] [Abstract][Full Text] [Related]
15. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum. Allorent G; Guglielmino E; Giustini C; Courtois F Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734 [TBL] [Abstract][Full Text] [Related]
16. Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome. Walker EJL; Pampuch M; Chang N; Cochrane RR; Karas BJ Plant Physiol; 2024 Mar; 194(4):2217-2228. PubMed ID: 38114089 [TBL] [Abstract][Full Text] [Related]
17. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Veluchamy A; Lin X; Maumus F; Rivarola M; Bhavsar J; Creasy T; O'Brien K; Sengamalay NA; Tallon LJ; Smith AD; Rayko E; Ahmed I; Le Crom S; Farrant GK; Sgro JY; Olson SA; Bondurant SS; Allen AE; Rabinowicz PD; Sussman MR; Bowler C; Tirichine L Nat Commun; 2013; 4():2091. PubMed ID: 23820484 [TBL] [Abstract][Full Text] [Related]
18. A strategy for complete telomere-to-telomere assembly of ciliate macronuclear genome using ultra-high coverage Nanopore data. Wang G; Wang S; Chai X; Zhang J; Yang W; Jiang C; Chen K; Miao W; Xiong J Comput Struct Biotechnol J; 2021; 19():1928-1932. PubMed ID: 33897985 [TBL] [Abstract][Full Text] [Related]
19. Knock-Down of a ligIV Homologue Enables DNA Integration via Homologous Recombination in the Marine Diatom Phaeodactylum tricornutum. Angstenberger M; Krischer J; Aktaş O; Büchel C ACS Synth Biol; 2019 Jan; 8(1):57-69. PubMed ID: 30525458 [TBL] [Abstract][Full Text] [Related]
20. Efficient Transformation of the Diatoms Phaeodactylum tricornutum by Multipulse Electroporation. Ifuku K; Yan D Methods Mol Biol; 2020; 2050():169-174. PubMed ID: 31468491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]