These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35811897)

  • 1. Visible Light-Induced Room-Temperature Formaldehyde Gas Sensor Based on Porous Three-Dimensional ZnO Nanorod Clusters with Rich Oxygen Vacancies.
    Zhang B; Wang J; Wei Q; Yu P; Zhang S; Xu Y; Dong Y; Ni Y; Ao J; Xia Y
    ACS Omega; 2022 Jul; 7(26):22861-22871. PubMed ID: 35811897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature.
    Liao J; Li Z; Wang G; Chen C; Lv S; Li M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4835-41. PubMed ID: 26804157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the Defect Structure (V
    Gu F; Li C; Han D; Wang Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):933-942. PubMed ID: 29260847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms.
    Ciftyurek E; Li Z; Schierbaum K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Vacancies Enabled Porous SnO
    Xu Y; Zheng L; Yang C; Zheng W; Liu X; Zhang J
    ACS Appl Mater Interfaces; 2020 May; 12(18):20704-20713. PubMed ID: 32293859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Evolution of Dual Defect Zn
    Xue Z; Cheng Z; Xu J; Xiang Q; Wang X; Xu J
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41559-41567. PubMed ID: 29116742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties.
    Tian S; Zhang Y; Zeng D; Wang H; Li N; Xie C; Pan C; Zhao X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27437-45. PubMed ID: 26421631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance Vo-ZnO/ZnS benefiting nanoarchitectonics from the synergism between defect engineering and surface engineering for photoelectrochemical glucose sensors.
    Xu Y; Yan B; Lai C; Wang M; Cao Y; Tu J; Chen D; Liu Y; Wu Q
    RSC Adv; 2023 Jun; 13(29):19782-19788. PubMed ID: 37396832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A p-n Heterojunction Based Pd/PdO@ZnO Organic Frameworks for High-Sensitivity Room-Temperature Formaldehyde Gas Sensor.
    Khan FU; Mehmood S; Liu S; Xu W; Shah MN; Zhao X; Ma J; Yang Y; Pan X
    Front Chem; 2021; 9():742488. PubMed ID: 34616714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO
    Wang J; Fan S; Xia Y; Yang C; Komarneni S
    J Hazard Mater; 2020 Jan; 381():120919. PubMed ID: 31369934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-selective dependence of room temperature ferromagnetism induced by hierarchical ZnO nanostructures.
    Motaung DE; Mhlongo GH; Nkosi SS; Malgas GF; Mwakikunga BW; Coetsee E; Swart HC; Abdallah HM; Moyo T; Ray SS
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8981-95. PubMed ID: 24896749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous ZnO Ultrathin Nanosheets with High Specific Surface Areas and Abundant Oxygen Vacancies for Acetylacetone Gas Sensing.
    Liu F; Wang X; Chen X; Song X; Tian J; Cui H
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24757-24763. PubMed ID: 31246390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.
    Tai H; Li X; Jiang Y; Xie G; Du X
    Sensors (Basel); 2015 Jan; 15(1):2086-103. PubMed ID: 25608214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Adsorption Site-Enhanced Vo-BiOCl/rGO Heterostructures for Efficient Response to NO
    Nie X; Zhong X; Yang F; Wang R; He X; Liu W
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36628-36636. PubMed ID: 38954707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe-Doped ZnO/Reduced Graphene Oxide Nanocomposite with Synergic Enhanced Gas Sensing Performance for the Effective Detection of Formaldehyde.
    Guo W; Zhao B; Zhou Q; He Y; Wang Z; Radacsi N
    ACS Omega; 2019 Jun; 4(6):10252-10262. PubMed ID: 31460117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Methane Gas Sensing through Defect Engineering in Ag-Ru Co-doped ZnO Nanorods.
    Li X; Hu H; Tan T; Sun M; Bao Y; Huang Z; Muhammad S; Xia X; Gao Y
    ACS Appl Mater Interfaces; 2024 May; 16(20):26395-26405. PubMed ID: 38728440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO
    Raghu AV; Karuppanan KK; Pullithadathil B
    ACS Sens; 2018 Sep; 3(9):1811-1821. PubMed ID: 30160472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of a Combination of Cr2O3-Functionalization and UV-Irradiation Techniques on the Ethanol Gas Sensing Performance of ZnO Nanorod Gas Sensors.
    Park S; Sun GJ; Jin C; Kim HW; Lee S; Lee C
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2805-11. PubMed ID: 26751000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Oxygen Vacancy Defect of ZnO/NiO Nanomaterials Improves Photocatalytic Performance and Ammonia Sensing Performance.
    Zhang J; Li J
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing triethylamine sensing of ZIF-derived ZnO microspheres arising from cobalt doping and defect engineering.
    Wei W; Zhang F; Sun Y; Yue Q; Yu K; Guo W; Qu F
    Chemosphere; 2022 Mar; 291(Pt 1):132715. PubMed ID: 34715109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.