These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 35812415)
1. Immunosuppression Reversal Nanovaccines Substituting Dendritic Cells for Personalized Cancer Immunotherapy. Chen H; Cheng H; Liang X; Cai S; Liu G Front Immunol; 2022; 13():934259. PubMed ID: 35812415 [TBL] [Abstract][Full Text] [Related]
2. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Liu C; Liu X; Xiang X; Pang X; Chen S; Zhang Y; Ren E; Zhang L; Liu X; Lv P; Wang X; Luo W; Xia N; Chen X; Liu G Nat Nanotechnol; 2022 May; 17(5):531-540. PubMed ID: 35410368 [TBL] [Abstract][Full Text] [Related]
3. Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. Chiozzini C; Olivetta E; Sanchez M; Arenaccio C; Ferrantelli F; Leone P; Federico M J Mol Med (Berl); 2019 Aug; 97(8):1139-1153. PubMed ID: 31161312 [TBL] [Abstract][Full Text] [Related]
4. Programmed Death-Ligand 1 on Antigen-presenting Cells Facilitates the Induction of Antigen-specific Cytotoxic T Lymphocytes: Application to Adoptive T-Cell Immunotherapy. Goto T; Nishida T; Takagi E; Miyao K; Koyama D; Sakemura R; Hanajiri R; Watanabe K; Imahashi N; Terakura S; Murata M; Kiyoi H J Immunother; 2016 Oct; 39(8):306-15. PubMed ID: 27548033 [TBL] [Abstract][Full Text] [Related]
5. Regulating T-cell metabolic reprogramming and blocking PD-1 co-promote personalized postoperative autologous nanovaccines. Chang L; Fu S; Gao T; Sang X; Yang H; Liu X; Yang H; Liu Y; Zhang N Biomaterials; 2023 Jun; 297():122104. PubMed ID: 37058898 [TBL] [Abstract][Full Text] [Related]
6. Dendritic-tumor cell hybrids induce tumor-specific immune responses more effectively than the simple mixture of dendritic and tumor cells. Pinho MP; Sundarasetty BS; Bergami-Santos PC; Steponavicius-Cruz K; Ferreira AK; Stripecke R; Barbuto JA Cytotherapy; 2016 Apr; 18(4):570-80. PubMed ID: 26971685 [TBL] [Abstract][Full Text] [Related]
7. [Development of effective antigen delivery carrier to dendritic cells via Fc receptor in cancer immunotherapy]. Suzuki R; Utoguchi N; Kawamura K; Kadowaki N; Okada N; Takizawa T; Uchiyama T; Maruyama K Yakugaku Zasshi; 2007 Feb; 127(2):301-6. PubMed ID: 17268150 [TBL] [Abstract][Full Text] [Related]
8. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Zhou S; Huang Y; Chen Y; Liu S; Xu M; Jiang T; Song Q; Jiang G; Gu X; Gao X; Chen J Biomaterials; 2020 Mar; 235():119795. PubMed ID: 32014739 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Wang K; Zhang X; Ye H; Wang X; Fan Z; Lu Q; Li S; Zhao J; Zheng S; He Z; Ni Q; Chen X; Sun J Nat Commun; 2023 Oct; 14(1):6748. PubMed ID: 37875481 [TBL] [Abstract][Full Text] [Related]
10. Dendritic cell-based nanovaccines for cancer immunotherapy. Paulis LE; Mandal S; Kreutz M; Figdor CG Curr Opin Immunol; 2013 Jun; 25(3):389-95. PubMed ID: 23571027 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances in Lung Cancer Immunotherapy: Input of T-Cell Epitopes Associated With Impaired Peptide Processing. Leclerc M; Mezquita L; Guillebot De Nerville G; Tihy I; Malenica I; Chouaib S; Mami-Chouaib F Front Immunol; 2019; 10():1505. PubMed ID: 31333652 [TBL] [Abstract][Full Text] [Related]
13. Aggregation-Induced-Emission Photosensitizer-Loaded Nano-Superartificial Dendritic Cells with Directly Presenting Tumor Antigens and Reversed Immunosuppression for Photodynamically Boosted Immunotherapy. Sun Z; Liu J; Li Y; Lin X; Chu Y; Wang W; Huang S; Li W; Peng J; Liu C; Cai L; Deng W; Sun C; Deng G Adv Mater; 2023 Jan; 35(3):e2208555. PubMed ID: 36255149 [TBL] [Abstract][Full Text] [Related]
14. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. Qin L; Zhang H; Zhou Y; Umeshappa CS; Gao H Small; 2021 Jul; 17(28):e2006000. PubMed ID: 33768693 [TBL] [Abstract][Full Text] [Related]
15. A cell-penetrating peptide-assisted nanovaccine promotes antigen cross-presentation and anti-tumor immune response. Liu X; Liu J; Liu D; Han Y; Xu H; Liu L; Leng X; Kong D Biomater Sci; 2019 Dec; 7(12):5516-5527. PubMed ID: 31670734 [TBL] [Abstract][Full Text] [Related]
16. Antigen presentation by dendritic cells and their significance in antineoplastic immunotherapy. Bodey B; Siegel SE; Kaiser HE In Vivo; 2004; 18(1):81-100. PubMed ID: 15011756 [TBL] [Abstract][Full Text] [Related]
17. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. Suzuki R; Oda Y; Utoguchi N; Namai E; Taira Y; Okada N; Kadowaki N; Kodama T; Tachibana K; Maruyama K J Control Release; 2009 Feb; 133(3):198-205. PubMed ID: 19000727 [TBL] [Abstract][Full Text] [Related]
19. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy. Song H; Su Q; Shi W; Huang P; Zhang C; Zhang C; Liu Q; Wang W Acta Biomater; 2022 Mar; 141():398-407. PubMed ID: 35007785 [TBL] [Abstract][Full Text] [Related]
20. A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy. Takeda Y; Kataoka K; Yamagishi J; Ogawa S; Seya T; Matsumoto M Cell Rep; 2017 May; 19(9):1874-1887. PubMed ID: 28564605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]