These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35812782)

  • 1. Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics.
    Massi E; Barthélemy J; Mailly J; Dromnelle R; Canitrot J; Poniatowski E; Girard B; Khamassi M
    Front Neurorobot; 2022; 16():864380. PubMed ID: 35812782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic model of hippocampal reverse replay for reinforcement learning.
    Whelan MT; Jimenez-Rodriguez A; Prescott TJ; Vasilaki E
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36327454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling awake hippocampal reactivations with model-based bidirectional search.
    Khamassi M; Girard B
    Biol Cybern; 2020 Apr; 114(2):231-248. PubMed ID: 32065253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of hippocampal replay driven by experience and environmental structure facilitates spatial learning.
    Diekmann N; Cheng S
    Elife; 2023 Mar; 12():. PubMed ID: 36916899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Offline replay supports planning in human reinforcement learning.
    Momennejad I; Otto AR; Daw ND; Norman KA
    Elife; 2018 Dec; 7():. PubMed ID: 30547886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Brain-Inspired Model of Hippocampal Spatial Cognition Based on a Memory-Replay Mechanism.
    Xu R; Ruan X; Huang J
    Brain Sci; 2022 Sep; 12(9):. PubMed ID: 36138911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal replays under the scrutiny of reinforcement learning models.
    Cazé R; Khamassi M; Aubin L; Girard B
    J Neurophysiol; 2018 Dec; 120(6):2877-2896. PubMed ID: 30303758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning.
    Hafez MB; Immisch T; Weber T; Wermter S
    Front Neurorobot; 2023; 17():1127642. PubMed ID: 37440981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolving view of replay and its functions in wake and sleep.
    Findlay G; Tononi G; Cirelli C
    Sleep Adv; 2020; 1(1):zpab002. PubMed ID: 33644760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hippocampal formation as a hierarchical generative model supporting generative replay and continual learning.
    Stoianov I; Maisto D; Pezzulo G
    Prog Neurobiol; 2022 Oct; 217():102329. PubMed ID: 35870678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the function of episodic memory in spatial learning.
    Zeng X; Diekmann N; Wiskott L; Cheng S
    Front Psychol; 2023; 14():1160648. PubMed ID: 37138984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Structures: Predictive Representations, Replay, and Generalization.
    Momennejad I
    Curr Opin Behav Sci; 2020 Apr; 32():155-166. PubMed ID: 35419465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse replay of behavioural sequences in hippocampal place cells during the awake state.
    Foster DJ; Wilson MA
    Nature; 2006 Mar; 440(7084):680-3. PubMed ID: 16474382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.
    Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO
    Front Neurorobot; 2017; 11():2. PubMed ID: 28179882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience Replay Using Transition Sequences.
    Karimpanal TG; Bouffanais R
    Front Neurorobot; 2018; 12():32. PubMed ID: 29977200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model.
    Johnson A; Redish AD
    Neural Netw; 2005 Nov; 18(9):1163-71. PubMed ID: 16198539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritized experience replay based on dynamics priority.
    Li H; Qian X; Song W
    Sci Rep; 2024 Mar; 14(1):6014. PubMed ID: 38472457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to train a self-driving vehicle: On the added value (or lack thereof) of curriculum learning and replay buffers.
    Mahmoud S; Billing E; Svensson H; Thill S
    Front Artif Intell; 2023; 6():1098982. PubMed ID: 36762255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurorobotic reinforcement learning for domains with parametrical uncertainty.
    Amaya C; von Arnim A
    Front Neurorobot; 2023; 17():1239581. PubMed ID: 37965072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.