These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35812822)

  • 21. Enhancement of Bayesian optimal interval design by accounting for overdose and underdose errors trade-offs.
    Sadachi R; Sato H; Fujiwara T; Hirakawa A
    J Biopharm Stat; 2023 Nov; ():1-20. PubMed ID: 37966109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving early phase oncology clinical trial design: The case for finding the optimal biological dose.
    Phillips A; Mondal S
    Pharm Stat; 2023; 22(4):739-747. PubMed ID: 36669771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the relative efficiency of model-assisted designs: a conditional approach.
    Lin R; Yuan Y
    J Biopharm Stat; 2019; 29(4):648-662. PubMed ID: 31258039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2D (2 Dimensional) TEQR design for Determining the optimal Dose for safety and efficacy.
    Ananthakrishnan R; Green S; Li D; LaValley M
    Contemp Clin Trials Commun; 2019 Dec; 16():100461. PubMed ID: 31799471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Backfilling Patients in Phase I Dose-Escalation Trials Using Bayesian Optimal Interval Design (BOIN).
    Zhao Y; Yuan Y; Korn EL; Freidlin B
    Clin Cancer Res; 2024 Feb; 30(4):673-679. PubMed ID: 38048044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contemporary dose-escalation methods for early phase studies in the immunotherapeutics era.
    Araujo DV; Oliva M; Li K; Fazelzad R; Liu ZA; Siu LL
    Eur J Cancer; 2021 Oct; 158():85-98. PubMed ID: 34656816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
    Horton BJ; Wages NA; Conaway MR
    Stat Med; 2017 Jan; 36(2):291-300. PubMed ID: 27435150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overall success rate of a safe and efficacious drug: Results using six phase 1 designs, each followed by standard phase 2 and 3 designs.
    Ruppert AS; Shoben AB
    Contemp Clin Trials Commun; 2018 Dec; 12():40-50. PubMed ID: 30225393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of EWOC principle in BLRM design for phase 1 oncology trials.
    Guo X; Kent S; Maity A; Zhong W
    J Biopharm Stat; 2024 Apr; ():1-17. PubMed ID: 38562014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporating historical information to improve phase I clinical trials.
    Zhou Y; Lee JJ; Wang S; Bailey S; Yuan Y
    Pharm Stat; 2021 Nov; 20(6):1017-1034. PubMed ID: 33793044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative review of novel model-assisted designs for phase I/II clinical trials.
    Shi H; Lin R; Lin X
    Biom J; 2024 Jun; 66(4):e2300398. PubMed ID: 38738318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CUSUMIN: A cumulative sum interval design for cancer phase I dose finding studies.
    Hatayama T; Yasui S
    Pharm Stat; 2022 Nov; 21(6):1324-1341. PubMed ID: 35833753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal biological dose selection in dose-finding trials with model-assisted designs based on efficacy and toxicity: a simulation study.
    Yamaguchi Y; Takeda K; Yoshida S; Maruo K
    J Biopharm Stat; 2024 May; 34(3):379-393. PubMed ID: 37114985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel framework of Bayesian optimal interval design for phase I trials with late-onset toxicities.
    Zhou H; Chen C; Sun L; Zeng Z
    Contemp Clin Trials; 2021 Jun; 105():106404. PubMed ID: 33862287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials.
    Lin R; Yin G
    Stat Med; 2017 Nov; 36(26):4106-4120. PubMed ID: 28786138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
    Zhang L; Yuan Y
    Stat Med; 2016 Nov; 35(27):4924-4936. PubMed ID: 27580928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensions of the mTPI and TEQR designs to include non-monotone efficacy in addition to toxicity for optimal dose determination for early phase immunotherapy oncology trials.
    Ananthakrishnan R; Green S; Li D; LaValley M
    Contemp Clin Trials Commun; 2018 Jun; 10():62-76. PubMed ID: 29696160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of adaptive trial designs for dose optimization.
    Zhang J; Chen X; Li B; Yan F
    Pharm Stat; 2023; 22(5):797-814. PubMed ID: 37156731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the effects of design parameters on the performances of phase I trial designs.
    Zhu Y; Hwang WT; Li Y
    Contemp Clin Trials Commun; 2019 Sep; 15():100379. PubMed ID: 31193764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bayesian design for finding optimal biological dose with mixed types of responses of toxicity and efficacy.
    Zhang D; Xu J
    Contemp Clin Trials; 2023 Apr; 127():107113. PubMed ID: 36758934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.