These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35813020)

  • 21. Reactive oxygen species are involved in the morphology-determining mechanism of Fremyella diplosiphon cells during complementary chromatic adaptation.
    Singh SP; Montgomery BL
    Microbiology (Reading); 2012 Sep; 158(Pt 9):2235-2245. PubMed ID: 22700654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence.
    Sode K; Horikoshi K; Takeyama H; Nakamura N; Matsunaga T
    J Biotechnol; 1991 Dec; 21(3):209-17. PubMed ID: 1367694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress.
    Luria G; Rutley N; Lazar I; Harper JF; Miller G
    Plant J; 2019 Jun; 98(5):942-952. PubMed ID: 30758085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium.
    Walker PL; Pakrasi HB
    Microbiol Spectr; 2022 Aug; 10(4):e0100822. PubMed ID: 35727069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and validation of a flow cytometric assay for detecting reactive oxygen species in the erythrocytes of healthy dogs.
    Woolcock AD; Serpa PBS; Santos AP; Christian JA; Moore GE
    Am J Vet Res; 2021 May; 82(5):343-351. PubMed ID: 33904808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Detection of intracellular reactive oxygen species by flow cytometry in Pichia pastoris fermentation].
    Xiao AF; Zhou XS; Zhou L; Zhang YX
    Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):273-7. PubMed ID: 16607956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Conversion of CO
    Lee HJ; Lee J; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM
    J Agric Food Chem; 2017 Dec; 65(48):10424-10428. PubMed ID: 29068210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect.
    Raanan H; Oren N; Treves H; Keren N; Ohad I; Berkowicz SM; Hagemann M; Koch M; Shotland Y; Kaplan A
    Biochim Biophys Acta; 2016 Jun; 1857(6):715-22. PubMed ID: 26896589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow cytometric analysis of the oxidative status in human peripheral blood mononuclear cells of workers exposed to welding fumes.
    du Plessis L; Laubscher P; Jooste J; du Plessis J; Franken A; van Aarde N; Eloff F
    J Occup Environ Hyg; 2010 Jun; 7(6):367-74. PubMed ID: 20397091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zero-Valent Iron Nanoparticles Induce Reactive Oxygen Species in the Cyanobacterium,
    Gichuki SM; Yalcin YS; Wyatt L; Ghann W; Uddin J; Kang H; Sitther V
    ACS Omega; 2021 Dec; 6(48):32730-32738. PubMed ID: 34901621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The antioxidant role of a reagent, 2',7'-dichlorodihydrofluorescin diacetate, detecting reactive-oxygen species and blocking the induction of heme oxygenase-1 and preventing cytotoxicity.
    Andoh Y; Mizutani A; Ohashi T; Kojo S; Ishii T; Adachi Y; Ikehara S; Taketani S
    J Biochem; 2006 Oct; 140(4):483-9. PubMed ID: 16959797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freshwater Cyanobacterium
    Liang Y; Zhang M; Wang M; Zhang W; Qiao C; Luo Q; Lu X
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism.
    Robinson JP; Bruner LH; Bassoe CF; Hudson JL; Ward PA; Phan SH
    J Leukoc Biol; 1988 Apr; 43(4):304-10. PubMed ID: 2832496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform.
    Li T; Li CT; Butler K; Hays SG; Guarnieri MT; Oyler GA; Betenbaugh MJ
    Biotechnol Biofuels; 2017; 10():55. PubMed ID: 28344645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon.
    Busch AW; Montgomery BL
    Front Microbiol; 2015; 6():1393. PubMed ID: 26696996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host.
    Ruffing AM
    Front Bioeng Biotechnol; 2014; 2():17. PubMed ID: 25152890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes.
    McBee ME; Chionh YH; Sharaf ML; Ho P; Cai MW; Dedon PC
    Front Microbiol; 2017; 8():459. PubMed ID: 28377755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic tools for cyanobacteria.
    Koksharova OA; Wolk CP
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):123-37. PubMed ID: 11876404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis.
    Ruffing AM; Jensen TJ; Strickland LM
    Microb Cell Fact; 2016 Nov; 15(1):190. PubMed ID: 27832791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942.
    Rillema R; Hoang Y; MacCready JS; Vecchiarelli AG
    mBio; 2021 Aug; 12(4):e0269620. PubMed ID: 34340540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.