These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35814029)

  • 41. Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate.
    Zeynoddin M; Bonakdari H; Azari A; Ebtehaj I; Gharabaghi B; Riahi Madavar H
    J Environ Manage; 2018 Sep; 222():190-206. PubMed ID: 29843092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atmospheric warming and the amplification of precipitation extremes.
    Allan RP; Soden BJ
    Science; 2008 Sep; 321(5895):1481-4. PubMed ID: 18687921
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative statistical study of hourly precipitation determined by radar-based stage IV and ground-based methods in the North Central United States.
    Catizone PA; Zell SE; Arrington CR; Newman MB; Weber SF; White RJ
    J Air Waste Manag Assoc; 2014 Mar; 64(3):291-308. PubMed ID: 24701688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intensification of subhourly heavy rainfall.
    Ayat H; Evans JP; Sherwood SC; Soderholm J
    Science; 2022 Nov; 378(6620):655-659. PubMed ID: 36356148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rainfall Prediction System Using Machine Learning Fusion for Smart Cities.
    Rahman AU; Abbas S; Gollapalli M; Ahmed R; Aftab S; Ahmad M; Khan MA; Mosavi A
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent global decline in rainfall interception loss due to altered rainfall regimes.
    Lian X; Zhao W; Gentine P
    Nat Commun; 2022 Dec; 13(1):7642. PubMed ID: 36496496
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent and future changes in extreme rainfall in the Catskills region of New York.
    DeGaetano AT; Castellano CM
    Ann N Y Acad Sci; 2013 Sep; 1298():43-51. PubMed ID: 24033407
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine learning-based assessment of long-term climate variability of Kerala.
    Vijay A; Varija K
    Environ Monit Assess; 2022 Jun; 194(7):498. PubMed ID: 35695969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anticipating cascading effects of extreme precipitation with pathway schemes - Three case studies from Europe.
    Schauwecker S; Gascón E; Park S; Ruiz-Villanueva V; Schwarb M; Sempere-Torres D; Stoffel M; Vitolo C; Rohrer M
    Environ Int; 2019 Jun; 127():291-304. PubMed ID: 30951945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling.
    Ishida K; Ercan A; Nagasato T; Kiyama M; Amagasaki M
    J Environ Manage; 2024 May; 359():120931. PubMed ID: 38678895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A satellite model of forest flammability.
    Steininger MK; Tabor K; Small J; Pinto C; Soliz J; Chavez E
    Environ Manage; 2013 Jul; 52(1):136-50. PubMed ID: 23760733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monitoring storm evolution using a high-density seismic network.
    Diaz J; Ruiz M; Udina M; Polls F; Martí D; Bech J
    Sci Rep; 2023 Feb; 13(1):1853. PubMed ID: 36725876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches.
    Park S; Park H; Im J; Yoo C; Rhee J; Lee B; Kwon C
    PLoS One; 2019; 14(10):e0223362. PubMed ID: 31600268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of climate change on urban drainage: an evaluation based on regional climate model simulation.
    Grum M; Jørgensen AT; Johansen RM; Linde JJ
    Water Sci Technol; 2006; 54(6-7):9-15. PubMed ID: 17120628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupling machine learning and physical modelling for predicting runoff at catchment scale.
    Zubelzu S; Ghalkha A; Ben Issaid C; Zanella A; Bennis M
    J Environ Manage; 2024 Mar; 354():120404. PubMed ID: 38377752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of convective and stratiform precipitation types on per- and polyfluoroalkyl substance concentrations in rain.
    Olney S; Jones M; Rockwell C; Collins RD; Bryant JD; Occhialini J
    Sci Total Environ; 2023 Sep; 890():164051. PubMed ID: 37201833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing the accuracy and reliability of satellite-derived precipitation products in the Kosi River basin (India).
    Singh AK; Singh V
    Environ Monit Assess; 2024 Jun; 196(7):671. PubMed ID: 38940879
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Significant climate change of extreme rainfall in Denmark.
    Arnbjerg-Nielsen K
    Water Sci Technol; 2006; 54(6-7):1-8. PubMed ID: 17120627
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods.
    Nourani V; Farboudfam N
    Environ Res; 2019 Jan; 168():306-318. PubMed ID: 30366282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comprehensive comparison of data fusion approaches to multi-source precipitation observations: a case study in Sichuan province, China.
    Duan Z; Ren Y; Liu X; Lei H; Hua X; Shu X; Zhou L
    Environ Monit Assess; 2022 May; 194(6):422. PubMed ID: 35543768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.