These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35814347)
1. Chimera Patterns of Synchrony in a Frustrated Array of Hebb Synapses. Botha AE; Ansariara M; Emadi S; Kolahchi MR Front Comput Neurosci; 2022; 16():888019. PubMed ID: 35814347 [TBL] [Abstract][Full Text] [Related]
2. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
3. Heteroclinic switching between chimeras in a ring of six oscillator populations. Lee S; Krischer K Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574 [TBL] [Abstract][Full Text] [Related]
4. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
5. Stability of rotatory solitary states in Kuramoto networks with inertia. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064 [TBL] [Abstract][Full Text] [Related]
6. Smallest Chimeras Under Repulsive Interactions. Saha S; Dana SK Front Netw Physiol; 2021; 1():778597. PubMed ID: 36925584 [TBL] [Abstract][Full Text] [Related]
7. Control of amplitude chimeras by time delay in oscillator networks. Gjurchinovski A; Schöll E; Zakharova A Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829 [TBL] [Abstract][Full Text] [Related]
8. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model. Brede M; Kalloniatis AC Phys Rev E; 2016 Jun; 93(6):062315. PubMed ID: 27415288 [TBL] [Abstract][Full Text] [Related]
9. Chaotic chimera attractors in a triangular network of identical oscillators. Lee S; Krischer K Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989 [TBL] [Abstract][Full Text] [Related]
10. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
11. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model. Kundu P; Khanra P; Hens C; Pal P Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755 [TBL] [Abstract][Full Text] [Related]
12. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise. Kostin VA; Munyaev VO; Osipov GV; Smirnov LA Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Taylor D; Ott E; Restrepo JG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814 [TBL] [Abstract][Full Text] [Related]
14. Chimera states in multiplex networks: Chameleon-like across-layer synchronization. Andrzejak RG; Espinoso A Chaos; 2023 May; 33(5):. PubMed ID: 37163994 [TBL] [Abstract][Full Text] [Related]
15. Weak chimeras in minimal networks of coupled phase oscillators. Ashwin P; Burylko O Chaos; 2015 Jan; 25(1):013106. PubMed ID: 25637917 [TBL] [Abstract][Full Text] [Related]