These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35814347)

  • 1. Chimera Patterns of Synchrony in a Frustrated Array of Hebb Synapses.
    Botha AE; Ansariara M; Emadi S; Kolahchi MR
    Front Comput Neurosci; 2022; 16():888019. PubMed ID: 35814347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heteroclinic switching between chimeras in a ring of six oscillator populations.
    Lee S; Krischer K
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix coupling and generalized frustration in Kuramoto oscillators.
    Buzanello GL; Barioni AED; de Aguiar MAM
    Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of rotatory solitary states in Kuramoto networks with inertia.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV
    Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smallest Chimeras Under Repulsive Interactions.
    Saha S; Dana SK
    Front Netw Physiol; 2021; 1():778597. PubMed ID: 36925584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.
    Brede M; Kalloniatis AC
    Phys Rev E; 2016 Jun; 93(6):062315. PubMed ID: 27415288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic chimera attractors in a triangular network of identical oscillators.
    Lee S; Krischer K
    Phys Rev E; 2023 May; 107(5-1):054205. PubMed ID: 37328989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model.
    Kundu P; Khanra P; Hens C; Pal P
    Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise.
    Kostin VA; Munyaev VO; Osipov GV; Smirnov LA
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimera states in multiplex networks: Chameleon-like across-layer synchronization.
    Andrzejak RG; Espinoso A
    Chaos; 2023 May; 33(5):. PubMed ID: 37163994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak chimeras in minimal networks of coupled phase oscillators.
    Ashwin P; Burylko O
    Chaos; 2015 Jan; 25(1):013106. PubMed ID: 25637917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smallest chimera states.
    Maistrenko Y; Brezetsky S; Jaros P; Levchenko R; Kapitaniak T
    Phys Rev E; 2017 Jan; 95(1-1):010203. PubMed ID: 28208439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states.
    Omelchenko I; Omel'chenko OE; Hövel P; Schöll E
    Phys Rev Lett; 2013 May; 110(22):224101. PubMed ID: 23767727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimera states in two populations with heterogeneous phase-lag.
    Martens EA; Bick C; Panaggio MJ
    Chaos; 2016 Sep; 26(9):094819. PubMed ID: 27781471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions.
    Sharma A; Rajwani P; Jalan S
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry.
    Manoranjani M; Gupta S; Chandrasekar VK
    Chaos; 2021 Aug; 31(8):083130. PubMed ID: 34470257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.