BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35814412)

  • 1. Deep Learning-Based Multi-Omics Integration Robustly Predicts Relapse in Prostate Cancer.
    Wei Z; Han D; Zhang C; Wang S; Liu J; Chao F; Song Z; Chen G
    Front Oncol; 2022; 12():893424. PubMed ID: 35814412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm.
    Lv J; Wang J; Shang X; Liu F; Guo S
    Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.
    Chaudhary K; Poirion OB; Lu L; Garmire LX
    Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based model for predicting progression in patients with head and neck squamous cell carcinoma.
    Zhao Z; Li Y; Wu Y; Chen R
    Cancer Biomark; 2020; 27(1):19-28. PubMed ID: 31658045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Prognostic Subtyping of Muscle-Invasive Bladder Cancer Revealed by Deep Learning-Based Multi-Omics Data Integration.
    Zhang X; Wang J; Lu J; Su L; Wang C; Huang Y; Zhang X; Zhu X
    Front Oncol; 2021; 11():689626. PubMed ID: 34422643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model.
    Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J
    Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for predicting prognosis in patients with esophageal squamous cell carcinoma based on joint representation learning.
    Yu J; Wu X; Lv M; Zhang Y; Zhang X; Li J; Zhu M; Huang J; Zhang Q
    Oncol Lett; 2020 Dec; 20(6):387. PubMed ID: 33193847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based ovarian cancer subtypes identification using multi-omics data.
    Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF
    BioData Min; 2020; 13():10. PubMed ID: 32863885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma.
    Zhang L; Lv C; Jin Y; Cheng G; Fu Y; Yuan D; Tao Y; Guo Y; Ni X; Shi T
    Front Genet; 2018; 9():477. PubMed ID: 30405689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication.
    Lee TY; Huang KY; Chuang CH; Lee CY; Chang TH
    Comput Biol Chem; 2020 May; 87():107277. PubMed ID: 32512487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Set of Immune-associated Gene Signature predicts Biochemical Recurrence in Localized Prostate Cancer Patients after Radical Prostatectomy.
    Luan JC; Zhang QJ; Zhao K; Zhou X; Yao LY; Zhang TT; Zeng TY; Xia JD; Song NH
    J Cancer; 2021; 12(12):3715-3725. PubMed ID: 33995646
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of Hypoxia-Related Subtypes, Establishment of Prognostic Models, and Characteristics of Tumor Microenvironment Infiltration in Colon Cancer.
    Wang C; Tang Y; Ma H; Wei S; Hu X; Zhao L; Wang G
    Front Genet; 2022; 13():919389. PubMed ID: 35783281
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification a novel set of 6 differential expressed genes in prostate cancer that can potentially predict biochemical recurrence after curative surgery.
    Li F; Ji JP; Xu Y; Liu RL
    Clin Transl Oncol; 2019 Aug; 21(8):1067-1075. PubMed ID: 30637711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four differentially expressed genes can predict prognosis and microenvironment immune infiltration in lung cancer: a study based on data from the GEO.
    Wen S; Peng W; Chen Y; Du X; Xia J; Shen B; Zhou G
    BMC Cancer; 2022 Feb; 22(1):193. PubMed ID: 35184748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. i-Modern: Integrated multi-omics network model identifies potential therapeutic targets in glioma by deep learning with interpretability.
    Pan X; Burgman B; Wu E; Huang JH; Sahni N; Stephen Yi S
    Comput Struct Biotechnol J; 2022; 20():3511-3521. PubMed ID: 35860408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic deregulation in prostate cancer.
    Srihari S; Kwong R; Tran K; Simpson R; Tattam P; Smith E
    Mol Omics; 2018 Oct; 14(5):320-329. PubMed ID: 30215656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics analysis identified hub genes in prostate cancer tumorigenesis and metastasis.
    Gu P; Yang D; Zhu J; Zhang M; He X
    Math Biosci Eng; 2021 Apr; 18(4):3180-3196. PubMed ID: 34198380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.