These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35814995)

  • 1. Preference of low vision devices in patients with central field loss and peripheral field loss.
    Gopalakrishnan S; Paramasivan G; Sathyaprasath M; Raman R
    Saudi J Ophthalmol; 2021; 35(4):286-292. PubMed ID: 35814995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of augmented reality technology for improving visual acuity of individuals with low vision.
    Gopalakrishnan S; Chouhan Suwalal S; Bhaskaran G; Raman R
    Indian J Ophthalmol; 2020 Jun; 68(6):1136-1142. PubMed ID: 32461448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-vision intervention in individuals with age-related macular degeneration.
    Gopalakrishnan S; Velu S; Raman R
    Indian J Ophthalmol; 2020 May; 68(5):886-889. PubMed ID: 32317472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prescribing patterns of low vision devices in patients with cone-related dystrophies.
    Mahalingam M; Gopalakrishnan S; Parasuraman D; Jayaraj PJ; Raman R
    Indian J Ophthalmol; 2023 Jan; 71(1):195-201. PubMed ID: 36588235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-vision intervention for oculocutaneous albinism in a Tertiary Eye Care Hospital in India.
    Gopalakrishnan S; Negiloni K; Suganthan RV; Velu S; Raman R
    Saudi J Ophthalmol; 2023; 37(1):38-42. PubMed ID: 36968775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study.
    Lange R; Kumagai A; Weiss S; Zaffke KB; Day S; Wicker D; Howson A; Jayasundera KT; Smolinski L; Hedlich C; Lee PP; Massof RW; Stelmack JA; Carlozzi NE; Ehrlich JR
    J Patient Rep Outcomes; 2021 Jan; 5(1):7. PubMed ID: 33439361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in distance and near visual acuities using low vision devices in diabetic retinopathy.
    Gopalakrishnan S; Muralidharan A; Susheel SC; Raman R
    Indian J Ophthalmol; 2017 Oct; 65(10):995-998. PubMed ID: 29044067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Pedestrian Collision Detection With Peripheral Field Loss and the Impact of Peripheral Prisms.
    Qiu C; Jung JH; Tuccar-Burak M; Spano L; Goldstein R; Peli E
    Transl Vis Sci Technol; 2018; 7(5):1. PubMed ID: 30197833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Immersive Virtual Reality Environment for Assessment of Functional Vision in people with Low Vision: A Pilot Study.
    Gopalakrishnan S; Samson CE; Kumar M; Karunakaran V; Raman R
    Nepal J Ophthalmol; 2022 Jan; 14(27):19-30. PubMed ID: 35996900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual rehabilitation of patients with low vision in uveitis.
    Gopalakrishnan S; Sudharshan S; Raman R; Saranya V; Majumder PD; Biswas J
    Indian J Ophthalmol; 2019 Jan; 67(1):101-104. PubMed ID: 30574902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Visual Parameters Between Normal Individuals and People with Low Vision in a Virtual Environment.
    Gopalakrishnan S; Jacob CES; Kumar M; Karunakaran V; Raman R
    Cyberpsychol Behav Soc Netw; 2020 Mar; 23(3):171-178. PubMed ID: 32150699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Visual rehabilitation in patients with retinitis pigmentosa].
    de Castro CT; Berezovsky A; de Castro DD; Salomão SR
    Arq Bras Oftalmol; 2006; 69(5):687-90. PubMed ID: 17187136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optic-flow and egocentric-direction strategies in walking: central vs peripheral visual field.
    Turano KA; Yu D; Hao L; Hicks JC
    Vision Res; 2005 Nov; 45(25-26):3117-32. PubMed ID: 16084556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing the choice of low-vision devices for visual rehabilitation in Stargardt disease.
    Das K; Gopalakrishnan S; Dalan D; Velu S; Ratra V; Ratra D
    Clin Exp Optom; 2019 Jul; 102(4):426-433. PubMed ID: 30582217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Reach-to-Grasp and Transport-to-Place Performance in Participants With Age-Related Macular Degeneration and Glaucoma.
    Pardhan S; Scarfe A; Bourne R; Timmis M
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1560-1569. PubMed ID: 28282488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driving with central field loss I: effect of central scotomas on responses to hazards.
    Bronstad PM; Bowers AR; Albu A; Goldstein R; Peli E
    JAMA Ophthalmol; 2013 Mar; 131(3):303-9. PubMed ID: 23329309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of peripheral visual field loss on representations of space: evidence for distortion and adaptation.
    Fortenbaugh FC; Hicks JC; Turano KA
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2765-72. PubMed ID: 18515599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does the extent of central visual field loss affect adaptive gait?
    Timmis MA; Scarfe AC; Pardhan S
    Gait Posture; 2016 Feb; 44():55-60. PubMed ID: 27004633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baseline traits of patients presenting at a low vision clinic in Shanghai, China.
    Gao G; Ouyang C; Dai J; Xue F; Wang X; Zou L; Chen M; Ma F; Yu M
    BMC Ophthalmol; 2015 Mar; 15():16. PubMed ID: 25884841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast Sensitivity in Eyes with Central Scotoma: Effect of Stimulus Drift.
    Lewis P; Venkataraman AP; Lundström L
    Optom Vis Sci; 2018 Apr; 95(4):354-361. PubMed ID: 29561506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.