These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35815376)

  • 1. Interaction of rod decussation and crack growth in enamel.
    Liu S; Xu Y; An B; Zhang D
    Comput Methods Biomech Biomed Engin; 2023 May; 26(6):700-709. PubMed ID: 35815376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete element models of tooth enamel, a complex three-dimensional biological composite.
    Pro JW; Barthelat F
    Acta Biomater; 2019 Aug; 94():536-552. PubMed ID: 31055119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the R-curve behavior of human tooth enamel.
    Bajaj D; Arola DD
    Biomaterials; 2009 Aug; 30(23-24):4037-46. PubMed ID: 19427691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the microstructures of mammalian enamel by synchrotron phase contrast microCT.
    Marsico C; Grimm JR; Renteria C; Guillen DP; Tang K; Nikitin V; Arola DD
    Acta Biomater; 2024 Apr; 178():208-220. PubMed ID: 38428512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden contributions of the enamel rods on the fracture resistance of human teeth.
    Yahyazadehfar M; Bajaj D; Arola DD
    Acta Biomater; 2013 Jan; 9(1):4806-14. PubMed ID: 23022547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of prism decussation on fatigue crack growth and fracture of human enamel.
    Bajaj D; Arola D
    Acta Biomater; 2009 Oct; 5(8):3045-56. PubMed ID: 19433137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enamel structure in astrapotheres and its functional implications.
    Rensberger JM; Pfretzschner HU
    Scanning Microsc; 1992 Jun; 6(2):495-508; discussion 508-10. PubMed ID: 1462135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the importance of aging to the crack growth resistance of human enamel.
    Yahyazadehfar M; Zhang D; Arola D
    Acta Biomater; 2016 Mar; 32():264-274. PubMed ID: 26747980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of fatigue crack growth in human enamel and hydroxyapatite.
    Bajaj D; Nazari A; Eidelman N; Arola DD
    Biomaterials; 2008 Dec; 29(36):4847-54. PubMed ID: 18804277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone.
    Demirtas A; Taylor EA; Gludovatz B; Ritchie RO; Donnelly E; Ural A
    J Mech Behav Biomed Mater; 2023 Sep; 145():106034. PubMed ID: 37494816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enamel microstructure and microstrain in the fracture of human and pig molar cusps.
    Popowics TE; Rensberger JM; Herring SW
    Arch Oral Biol; 2004 Aug; 49(8):595-605. PubMed ID: 15196977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the vital role of enamel prism interfaces and graded properties in human tooth survival.
    Borrero-Lopez O; Constantino PJ; Bush MB; Lawn BR
    Biol Lett; 2020 Aug; 16(8):20200498. PubMed ID: 32842897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research of the role of microstructure in the wear mechanism of canine and bovine enamel.
    Xiao H; Lei L; Peng J; Yang D; Zeng Q; Zheng J; Zhou Z
    J Mech Behav Biomed Mater; 2019 Apr; 92():33-39. PubMed ID: 30654218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].
    Jingjing Z; Tiezhou H; Hong T; Xueyan G; Cui W
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2014 Oct; 32(5):464-6. PubMed ID: 25490823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
    Ural A; Vashishth D
    J Biomech; 2007; 40(7):1606-14. PubMed ID: 17054962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and Extended Finite Element Method (XFEM).
    Yadav RN; Uniyal P; Sihota P; Kumar S; Dhiman V; Goni VG; Sahni D; Bhadada SK; Kumar N
    Med Eng Phys; 2021 Jul; 93():100-112. PubMed ID: 34154770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-indentation fracture behavior of human enamel.
    Padmanabhan SK; Balakrishnan A; Chu MC; Kim TN; Cho SJ
    Dent Mater; 2010 Jan; 26(1):100-4. PubMed ID: 19796801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crack modes and toughening mechanism of a bioinspired helicoidal recursive composite with nonlinear recursive rotation angle-based layups.
    Wang K; Wu X; An L; Li R; Li Z; Li G; Zhou Z
    J Mech Behav Biomed Mater; 2023 Jun; 142():105866. PubMed ID: 37141743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durability of adhesive bonds to tooth structure involving the DEJ.
    Elbahie E; Beitzel D; Mutluay MM; Majd H; Yahyazadehfar M; Arola D
    J Mech Behav Biomed Mater; 2018 Jan; 77():557-565. PubMed ID: 29078196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.