These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35815580)
1. Effect of Leu/Val Mutation on the Energetics of Antimicrobial Peptide:Micelle Binding. Ghosh S; Chatterjee S; Satpati P J Phys Chem B; 2022 Jul; 126(28):5262-5273. PubMed ID: 35815580 [TBL] [Abstract][Full Text] [Related]
2. Effect of a monovalent salt on the energetics of an antimicrobial-peptide: micelle dissociation. Ghosh S; Chatterjee S; Satpati P Phys Chem Chem Phys; 2022 Oct; 24(38):23669-23678. PubMed ID: 36148810 [TBL] [Abstract][Full Text] [Related]
3. Effect of Spacer Length Modification of the Cationic Side Chain on the Energetics of Antimicrobial Peptide Binding to Membrane-Mimetic Bilayers. Ghosh S; Chatterjee S; Satpati P J Chem Inf Model; 2023 Sep; 63(18):5823-5833. PubMed ID: 37684221 [TBL] [Abstract][Full Text] [Related]
4. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Rozek A; Friedrich CL; Hancock RE Biochemistry; 2000 Dec; 39(51):15765-74. PubMed ID: 11123901 [TBL] [Abstract][Full Text] [Related]
5. Conformational and membrane interaction studies of the antimicrobial peptide alyteserin-1c and its analogue [E4K]alyteserin-1c. Subasinghage AP; O'Flynn D; Conlon JM; Hewage CM Biochim Biophys Acta; 2011 Aug; 1808(8):1975-84. PubMed ID: 21565166 [TBL] [Abstract][Full Text] [Related]
6. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin. Bandyopadhyay S; Ng BY; Chong C; Lim MZ; Gill SK; Lee KH; Sivaraman J; Chatterjee C J Pept Sci; 2014 Oct; 20(10):811-21. PubMed ID: 25044683 [TBL] [Abstract][Full Text] [Related]
7. Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations. Khandelia H; Kaznessis YN J Phys Chem B; 2007 Jan; 111(1):242-50. PubMed ID: 17201448 [TBL] [Abstract][Full Text] [Related]
8. Comparison of interactions between beta-hairpin decapeptides and SDS/DPC micelles from experimental and simulation data. Langham AA; Waring AJ; Kaznessis YN BMC Biochem; 2007 Jul; 8():11. PubMed ID: 17634088 [TBL] [Abstract][Full Text] [Related]
9. NMR structures and molecular dynamics simulation of hylin-a1 peptide analogs interacting with micelles. Crusca E; Câmara AS; Matos CO; Marchetto R; Cilli EM; Lião LM; Lima de Oliveira A J Pept Sci; 2017 Jun; 23(6):421-430. PubMed ID: 28425152 [TBL] [Abstract][Full Text] [Related]
10. How can a beta-sheet peptide be both a potent antimicrobial and harmfully toxic? Molecular dynamics simulations of protegrin-1 in micelles. Langham AA; Khandelia H; Kaznessis YN Biopolymers; 2006; 84(2):219-31. PubMed ID: 16235232 [TBL] [Abstract][Full Text] [Related]
11. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. Sayyed-Ahmad A; Khandelia H; Kaznessis YN Mol Simul; 2009 Sep; 35(10-11):986-997. PubMed ID: 21113423 [TBL] [Abstract][Full Text] [Related]
12. Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding. Ghosh S; Pandit G; Debnath S; Chatterjee S; Satpati P RSC Adv; 2021 Nov; 11(58):36836-36849. PubMed ID: 35494385 [TBL] [Abstract][Full Text] [Related]
13. Effect of micelle interface on the binding of anticoccidial PW2 peptide. Tinoco LW; Gomes-Neto F; Valente AP; Almeida FC J Biomol NMR; 2007 Dec; 39(4):315-22. PubMed ID: 17926009 [TBL] [Abstract][Full Text] [Related]
14. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom. Bandyopadhyay S; Lee M; Sivaraman J; Chatterjee C Biochem Biophys Res Commun; 2013 Jan; 430(1):1-6. PubMed ID: 23159628 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides' structure: implications for peptide toxicity and activity. Khandelia H; Kaznessis YN Peptides; 2006 Jun; 27(6):1192-200. PubMed ID: 16325306 [TBL] [Abstract][Full Text] [Related]
17. Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides. Wang Q; Hong G; Johnson GR; Pachter R; Cheung MS J Phys Chem B; 2010 Nov; 114(43):13726-35. PubMed ID: 20939546 [TBL] [Abstract][Full Text] [Related]
18. NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle: Implications in antimicrobial activity. Sinha S; Ng WJ; Bhattacharjya S Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183432. PubMed ID: 32781154 [TBL] [Abstract][Full Text] [Related]
19. Bridging Thermodynamics, Antimicrobial Activity, and pH Sensitivity of Cationic Membranolytic Heptapeptides-A Computational and Experimental Study. Ghosh S; Sarkar T; Chatterjee S; Satpati P J Chem Inf Model; 2023 Apr; 63(8):2393-2408. PubMed ID: 37021489 [TBL] [Abstract][Full Text] [Related]
20. Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape. Göbl C; Dulle M; Hohlweg W; Grossauer J; Falsone SF; Glatter O; Zangger K J Phys Chem B; 2010 Apr; 114(13):4717-24. PubMed ID: 20225847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]