BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35815634)

  • 1. Next-Generation Sequencing-Based Analysis of the Roles of DNA Polymerases ν and θ in the Replicative Bypass of 8-Oxo-7,8-dihydroguanine in Human Cells.
    Liu Y; Zhu X; Wang Z; Dai X; You C
    ACS Chem Biol; 2022 Aug; 17(8):2315-2319. PubMed ID: 35815634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of polymerases ν and θ in replicative bypass of
    Du H; Wang P; Wu J; He X; Wang Y
    J Biol Chem; 2020 Apr; 295(14):4556-4562. PubMed ID: 32098870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Bypass of Thymidine Glycol by DNA Polymerase θ Forms Sequence-Dependent Frameshift Mutations.
    Laverty DJ; Greenberg MM
    Biochemistry; 2017 Dec; 56(51):6726-6733. PubMed ID: 29243925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical analysis of active site mutations of human polymerase η.
    Suarez SC; Beardslee RA; Toffton SM; McCulloch SD
    Mutat Res; 2013; 745-746():46-54. PubMed ID: 23499771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase δ-interacting protein 2 is a processivity factor for DNA polymerase λ during 8-oxo-7,8-dihydroguanine bypass.
    Maga G; Crespan E; Markkanen E; Imhof R; Furrer A; Villani G; Hübscher U; van Loon B
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18850-5. PubMed ID: 24191025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1.
    Choi JY; Lim S; Kim EJ; Jo A; Guengerich FP
    J Mol Biol; 2010 Nov; 404(1):34-44. PubMed ID: 20888339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not breathing is not an option: How to deal with oxidative DNA damage.
    Markkanen E
    DNA Repair (Amst); 2017 Nov; 59():82-105. PubMed ID: 28963982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of oxidative DNA damage repair: the adenine:8-oxo-guanine problem.
    Markkanen E; Hübscher U; van Loon B
    Cell Cycle; 2012 Mar; 11(6):1070-5. PubMed ID: 22370481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta.
    McCulloch SD; Kokoska RJ; Garg P; Burgers PM; Kunkel TA
    Nucleic Acids Res; 2009 May; 37(9):2830-40. PubMed ID: 19282446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine.
    Sassa A; Çağlayan M; Rodriguez Y; Beard WA; Wilson SH; Nohmi T; Honma M; Yasui M
    J Biol Chem; 2016 Nov; 291(46):24314-24323. PubMed ID: 27660390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins.
    Maga G; Villani G; Crespan E; Wimmer U; Ferrari E; Bertocci B; Hübscher U
    Nature; 2007 May; 447(7144):606-8. PubMed ID: 17507928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unique error signature for human DNA polymerase nu.
    Arana ME; Takata K; Garcia-Diaz M; Wood RD; Kunkel TA
    DNA Repair (Amst); 2007 Feb; 6(2):213-23. PubMed ID: 17118716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases.
    Xu W; Ouellette A; Ghosh S; O'Neill TC; Greenberg MM; Zhao L
    Biochemistry; 2015 Dec; 54(50):7409-22. PubMed ID: 26626537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translesion synthesis across 1,N2-ethenoguanine by human DNA polymerases.
    Choi JY; Zang H; Angel KC; Kozekov ID; Goodenough AK; Rizzo CJ; Guengerich FP
    Chem Res Toxicol; 2006 Jun; 19(6):879-86. PubMed ID: 16780368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A switch between DNA polymerases δ and λ promotes error-free bypass of 8-oxo-G lesions.
    Markkanen E; Castrec B; Villani G; Hübscher U
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20401-6. PubMed ID: 23175785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage.
    Sabouri N; Viberg J; Goyal DK; Johansson E; Chabes A
    Nucleic Acids Res; 2008 Oct; 36(17):5660-7. PubMed ID: 18772226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication.
    Sekimoto T; Oda T; Kurashima K; Hanaoka F; Yamashita T
    Mol Cell Biol; 2015 Feb; 35(4):699-715. PubMed ID: 25487575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hand-off of DNA between archaeal polymerases allows high-fidelity replication to resume at a discrete intermediate three bases past 8-oxoguanine.
    Cranford MT; Kaszubowski JD; Trakselis MA
    Nucleic Acids Res; 2020 Nov; 48(19):10986-10997. PubMed ID: 32997110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel enzymatic function of DNA polymerase nu in translesion DNA synthesis past major groove DNA-peptide and DNA-DNA cross-links.
    Yamanaka K; Minko IG; Takata K; Kolbanovskiy A; Kozekov ID; Wood RD; Rizzo CJ; Lloyd RS
    Chem Res Toxicol; 2010 Mar; 23(3):689-95. PubMed ID: 20102227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.