These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35815671)
1. Advanced design and development of catalysts in propane dehydrogenation. Yang F; Zhang J; Shi Z; Chen J; Wang G; He J; Zhao J; Zhuo R; Wang R Nanoscale; 2022 Jul; 14(28):9963-9988. PubMed ID: 35815671 [TBL] [Abstract][Full Text] [Related]
2. An Active and Regenerable Nanometric High-Entropy Catalyst for Efficient Propane Dehydrogenation. Zhou SZ; Li WC; He B; Xie YD; Wang H; Liu X; Chen L; Wei J; Lu AH Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410835. PubMed ID: 39044707 [TBL] [Abstract][Full Text] [Related]
3. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chen S; Chang X; Sun G; Zhang T; Xu Y; Wang Y; Pei C; Gong J Chem Soc Rev; 2021 Mar; 50(5):3315-3354. PubMed ID: 33491692 [TBL] [Abstract][Full Text] [Related]
4. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. Nakaya Y; Furukawa S Chempluschem; 2022 Feb; 87(4):e202100560. PubMed ID: 35194957 [TBL] [Abstract][Full Text] [Related]
5. Support Screening to Shape Propane Dehydrogenation SnPt-Based Catalysts. Festa G; Serrano-Lotina A; Meloni E; Portela R; Ruocco C; Martino M; Palma V Ind Eng Chem Res; 2024 Sep; 63(38):16269-16284. PubMed ID: 39355008 [TBL] [Abstract][Full Text] [Related]
6. Tricoordinated Single-Atom Cobalt in Zeolite Boosting Propane Dehydrogenation. Qu Z; He G; Zhang T; Fan Y; Guo Y; Hu M; Xu J; Ma Y; Zhang J; Fan W; Sun Q; Mei D; Yu J J Am Chem Soc; 2024 Apr; 146(13):8939-8948. PubMed ID: 38526452 [TBL] [Abstract][Full Text] [Related]
7. Non-Classical Deactivation Mechanism in a Supported Intermetallic Catalyst for Propane Dehydrogenation. Tian J; Kong R; Deng B; Cheng Y; Hu K; Zhong Z; Sun T; Tan M; Chen L; Zhao J; Wang Y; Li X; Zhu Y Angew Chem Int Ed Engl; 2024 Oct; 63(41):e202409556. PubMed ID: 38988065 [TBL] [Abstract][Full Text] [Related]
8. Screening and Mechanism Exploration of Non-Noble Metal Ni Zhang M; Feng H; Wang S; Liu T; Deng Y; Han J; Zhang X J Phys Chem Lett; 2024 Apr; 15(14):3785-3795. PubMed ID: 38557057 [TBL] [Abstract][Full Text] [Related]
9. Atomically Dispersed Co Wu L; Ren Z; He Y; Yang M; Yu Y; Liu Y; Tan L; Tang Y ACS Appl Mater Interfaces; 2021 Oct; 13(41):48934-48948. PubMed ID: 34615351 [TBL] [Abstract][Full Text] [Related]
10. A Smart Design of Non-Noble Catalysts for Sustainable Propane Dehydrogenation. Smith LR; Sun Z; Hutchings GJ Angew Chem Int Ed Engl; 2024 Dec; 63(51):e202416080. PubMed ID: 39329435 [TBL] [Abstract][Full Text] [Related]
11. Subsurface-Regulated PtGa Nanoparticles Confined in Silicalite-1 for Propane Dehydrogenation. Zhang B; Zheng L; Zhai Z; Li G; Liu G ACS Appl Mater Interfaces; 2021 Apr; 13(14):16259-16266. PubMed ID: 33813832 [TBL] [Abstract][Full Text] [Related]
12. Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation. Zhou J; Sun Q; Qin Y; Liu H; Hu P; Xiong C; Ji H J Colloid Interface Sci; 2024 Jun; 663():94-102. PubMed ID: 38394821 [TBL] [Abstract][Full Text] [Related]
13. Improving the Selectivity and Stability of Supported Cobalt Catalysts via Static Bi-Doping and Dynamic Trace CO Yao Y; Wang J; Liu Q; Yu C; Gao Z; Yuan F; Wang X Angew Chem Int Ed Engl; 2024 Sep; ():e202415295. PubMed ID: 39248640 [TBL] [Abstract][Full Text] [Related]
14. Catalytic Behavior of Chromium Oxide Supported on Nanocasting-Prepared Mesoporous Alumina in Dehydrogenation of Propane. Węgrzyniak A; Jarczewski S; Węgrzynowicz A; Michorczyk B; Kuśtrowski P; Michorczyk P Nanomaterials (Basel); 2017 Sep; 7(9):. PubMed ID: 28862670 [TBL] [Abstract][Full Text] [Related]
15. Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces. Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2844-2855. PubMed ID: 38414834 [TBL] [Abstract][Full Text] [Related]
16. Research progress of CO Wang ZY; He ZH; Li LY; Yang SY; He MX; Sun YC; Wang K; Chen JG; Liu ZT Rare Metals; 2022; 41(7):2129-2152. PubMed ID: 35291268 [TBL] [Abstract][Full Text] [Related]
17. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation. Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010 [TBL] [Abstract][Full Text] [Related]
18. Recent progress in catalytic dehydrogenation of propane over Pt-based catalysts. Shan Y; Hu H; Fan X; Zhao Z Phys Chem Chem Phys; 2023 Jul; 25(28):18609-18622. PubMed ID: 37404043 [TBL] [Abstract][Full Text] [Related]
19. Modeling the Selectivity of Hydrotalcite-Based Catalyst in the Propane Dehydrogenation Reaction. Festa G; Contaldo P; Martino M; Meloni E; Palma V Ind Eng Chem Res; 2023 Oct; 62(41):16622-16637. PubMed ID: 37869418 [TBL] [Abstract][Full Text] [Related]
20. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nakaya Y; Hirayama J; Yamazoe S; Shimizu KI; Furukawa S Nat Commun; 2020 Jun; 11(1):2838. PubMed ID: 32503995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]