These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 35815696)
1. Stem powder and its active carbon of Tungala LS; Mekala S; Pala SL; Biftu WK; Ravindhranath K Int J Phytoremediation; 2023; 25(5):598-608. PubMed ID: 35815696 [TBL] [Abstract][Full Text] [Related]
2. Novel adsorbents for the removal of toxic cadmium ions from polluted water. Laxmana Rao R; Dhana Dinesh B; Mekala S; Ramesh Babu J; Ravindhranath K Int J Phytoremediation; 2023; 25(9):1127-1141. PubMed ID: 36300910 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. Šehović E; Memić M; Sulejmanović J; Hameed M; Begić S; Ljubijankić N; Selović A; Ghfar AA; Sher F Chemosphere; 2022 Nov; 307(Pt 1):135737. PubMed ID: 35850218 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous removal of lead and cadmium ions from simulant and industrial waste water: using Pala SL; Kebede Biftu W; Suneetha M; Ravindhranath K Int J Phytoremediation; 2022; 24(6):637-651. PubMed ID: 34410178 [TBL] [Abstract][Full Text] [Related]
5. Efficient removal and recovery of uranium from industrial radioactive wastewaters using functionalized activated carbon powder derived from zirconium carbide process waste. Nezhad MM; Semnani A; Tavakkoli N; Shirani M Environ Sci Pollut Res Int; 2021 Oct; 28(40):57073-57089. PubMed ID: 34081279 [TBL] [Abstract][Full Text] [Related]
6. Removal of Pb(II) ions from aqueous solution and industrial effluent using natural biosorbents. Singha B; Das SK Environ Sci Pollut Res Int; 2012 Jul; 19(6):2212-26. PubMed ID: 22293904 [TBL] [Abstract][Full Text] [Related]
7. Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule. Yuvaraja G; Zheng NC; Pang Y; Su M; Chen DY; Kong LJ; Mehmood S; Subbaiah MV; Wen JC Int J Biol Macromol; 2020 Apr; 148():887-897. PubMed ID: 31945442 [TBL] [Abstract][Full Text] [Related]
8. Enhanced removal of chromium (VI) from wastewater using active carbon derived from Lantana camara plant as adsorbent. Ravulapalli S; Kunta R Water Sci Technol; 2018 Nov; 78(5-6):1377-1389. PubMed ID: 30388094 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of phase transfer kinetics and thermodynamic equilibria of Reactive Orange 16 sorption onto chemically improved Arachis hypogaea pod powder. Chandarana H; Subburaj S; Kumar PS; Kumar MA Chemosphere; 2021 Aug; 276():130136. PubMed ID: 33684858 [TBL] [Abstract][Full Text] [Related]
10. Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples. Ghorbani M; Shams A; Seyedin O; Afshar Lahoori N Environ Sci Pollut Res Int; 2018 Feb; 25(6):5655-5667. PubMed ID: 29222663 [TBL] [Abstract][Full Text] [Related]
11. Characterization and adsorption of malachite green dye from aqueous solution onto Ahmad Khan F; Dar BA; Farooqui M Int J Phytoremediation; 2023; 25(5):646-657. PubMed ID: 35862864 [TBL] [Abstract][Full Text] [Related]
12. Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions. Huang MR; Li S; Li XG J Phys Chem B; 2010 Mar; 114(10):3534-42. PubMed ID: 20175512 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies. Kaur N; Kaur M; Singh D Environ Pollut; 2019 Oct; 253():111-119. PubMed ID: 31302397 [TBL] [Abstract][Full Text] [Related]
14. Biosorption of lead ions from aqueous effluents by rapeseed biomass. Morosanu I; Teodosiu C; Paduraru C; Ibanescu D; Tofan L N Biotechnol; 2017 Oct; 39(Pt A):110-124. PubMed ID: 27576101 [TBL] [Abstract][Full Text] [Related]
15. Performance of wild plants-derived biochar in the remediation of water contaminated with lead: sorption optimization, kinetics, equilibrium, thermodynamics and reusability studies. Yılmaz C; Güzel F Int J Phytoremediation; 2022; 24(2):177-186. PubMed ID: 34085895 [TBL] [Abstract][Full Text] [Related]
16. Removal of hazardous dye from aqueous media using low-cost peanut (Arachis hypogaea) shells as adsorbents. Herbert A; Kumar U; Janardhan P Water Environ Res; 2021 Jul; 93(7):1032-1043. PubMed ID: 33289248 [TBL] [Abstract][Full Text] [Related]
17. Bioremediation of Cd(II), Pb(II) and Cu(II) from industrial effluents by Moringa stenopetala seed husk. Kebede TG; Dube S; Mhuka V; Nindi MM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(4):337-351. PubMed ID: 30614373 [TBL] [Abstract][Full Text] [Related]
18. Augmented dye eradication from wastewater using alkali-aided, reinforced waste acacia ( Samal PP; Qaiyum MA; Dutta S; Dey B; Dey S Int J Phytoremediation; 2024; 26(1):52-62. PubMed ID: 37334896 [TBL] [Abstract][Full Text] [Related]
19. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Mahmood-Ul-Hassan M; Yasin M; Yousra M; Ahmad R; Sarwar S Environ Sci Pollut Res Int; 2018 May; 25(13):12570-12578. PubMed ID: 29464606 [TBL] [Abstract][Full Text] [Related]
20. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Ozdes D; Duran C; Senturk HB J Environ Manage; 2011 Dec; 92(12):3082-90. PubMed ID: 21856065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]