These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 3581578)

  • 1. Early vascular changes in rabbit subchondral bone after repetitive impulsive loading.
    Farkas T; Boyd RD; Schaffler MB; Radin EL; Burr DB
    Clin Orthop Relat Res; 1987 Jun; (219):259-67. PubMed ID: 3581578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meniscectomy leads to an early increase in subchondral bone plate thickness in the rabbit knee.
    Fahlgren A; Messner K; Aspenberg P
    Acta Orthop Scand; 2003 Aug; 74(4):437-41. PubMed ID: 14521295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mechanical loading on the tissues of the rabbit knee.
    Radin EL; Martin RB; Burr DB; Caterson B; Boyd RD; Goodwin C
    J Orthop Res; 1984; 2(3):221-34. PubMed ID: 6436458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis.
    Ding M; Danielsen CC; Hvid I
    Calcif Tissue Int; 2008 Jan; 82(1):77-86. PubMed ID: 18175032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence.
    Burr DB; Schaffler MB
    Microsc Res Tech; 1997 May; 37(4):343-57. PubMed ID: 9185156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of subchondral bone in the initiation and progression of cartilage damage.
    Radin EL; Rose RM
    Clin Orthop Relat Res; 1986 Dec; (213):34-40. PubMed ID: 3780104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of repetitive impulsive loading on the knee joints of rabbits.
    Radin EL; Ehrlich MG; Chernack R; Abernethy P; Paul IL; Rose RM
    Clin Orthop Relat Res; 1978; (131):288-93. PubMed ID: 657637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis.
    Wang SX; Laverty S; Dumitriu M; Plaas A; Grynpas MD
    Arthritis Rheum; 2007 May; 56(5):1537-48. PubMed ID: 17469133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow changes in the tibia during external loading.
    McDonald F; Pitt Ford TR
    J Orthop Res; 1993 Jan; 11(1):36-48. PubMed ID: 8423519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometric analysis of subchondral bone of the tibial condyle in osteoarthrosis.
    Shimizu M; Tsuji H; Matsui H; Katoh Y; Sano A
    Clin Orthop Relat Res; 1993 Aug; (293):229-39. PubMed ID: 8339486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary osteoarthrosis in guinea pigs: a stereological study.
    de Bri E; Reinholt FP; Svensson O
    J Orthop Res; 1995 Sep; 13(5):769-76. PubMed ID: 7472756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective repair of a fresh osteochondral defect in the rabbit knee joint by articulated joint distraction following subchondral drilling.
    Kajiwara R; Ishida O; Kawasaki K; Adachi N; Yasunaga Y; Ochi M
    J Orthop Res; 2005 Jul; 23(4):909-15. PubMed ID: 16023007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit.
    Vandamme K; Naert I; Geris L; Sloten JV; Puers R; Duyck J
    Clin Oral Implants Res; 2007 Aug; 18(4):471-80. PubMed ID: 17517061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic changes in rabbit retro-patellar cartilage and subchondral bone after blunt impact loading of the patellofemoral joint.
    Ewers BJ; Weaver BT; Sevensma ET; Haut RC
    J Orthop Res; 2002 May; 20(3):545-50. PubMed ID: 12038629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A capsular incision leads to a fast osteoarthritic response, but also elevated levels of activated osteogenic protein-1 in rabbit knee joint cartilage.
    Fahlgren A; Chubinskaya S; Messner K; Aspenberg P
    Scand J Med Sci Sports; 2006 Dec; 16(6):456-62. PubMed ID: 17121649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off.
    Saxon LK; Robling AG; Alam I; Turner CH
    Bone; 2005 Mar; 36(3):454-64. PubMed ID: 15777679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in guinea pig primary osteoarthrosis.
    Ding M; Danielsen CC; Hvid I
    Calcif Tissue Int; 2006 Feb; 78(2):113-22. PubMed ID: 16397735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz.
    Warden SJ; Turner CH
    Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading.
    Thorsen K; Kristoffersson AO; Lerner UH; Lorentzon RP
    J Clin Invest; 1996 Dec; 98(11):2446-9. PubMed ID: 8958205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morselized and impacted bone graft. Animal experiments on proteins, impaction and load.
    Tägil M
    Acta Orthop Scand Suppl; 2000 Feb; 290():1-40. PubMed ID: 10745934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.