These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 3581581)

  • 21. [Biological reaction of bone tissue and epiphyseal cartilage to screw insertion].
    Wagner H
    Z Orthop Ihre Grenzgeb; 1972 Dec; 110(6):914-9. PubMed ID: 4264954
    [No Abstract]   [Full Text] [Related]  

  • 22. Increasing nail-cortical contact to increase fixation stability and decrease implant strain in antegrade locked nailing of distal femoral fractures: a biomechanical study.
    Huang SC; Lin CC; Lin J
    J Trauma; 2009 Feb; 66(2):436-42. PubMed ID: 19065112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel.
    Sun C; Huang G; Christensen FB; Dalstra M; Overgaard S; Bünger C
    Chin Med J (Engl); 1999 May; 112(5):456-60. PubMed ID: 11593519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws.
    Tecklenburg K; Burkart P; Hoser C; Rieger M; Fink C
    Arthroscopy; 2006 Sep; 22(9):993-9. PubMed ID: 16952730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-energy X-ray absorptiometry of canine femurs with and without fracture fixation devices.
    Markel MD; Bogdanske JJ
    Am J Vet Res; 1994 Jun; 55(6):862-6. PubMed ID: 7944029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of diameter of the drill hole on torque of screw insertion and pushout strength for headless tapered compression screws in simulated fractures of the lateral condyle of the equine third metacarpal bone.
    Carpenter RS; Galuppo LD; Stover SM
    Am J Vet Res; 2006 May; 67(5):895-900. PubMed ID: 16649927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-bound bisphosphonates enhance screw fixation in rats--increasing effect up to 8 weeks after insertion.
    Wermelin K; Tengvall P; Aspenberg P
    Acta Orthop; 2007 Jun; 78(3):385-92. PubMed ID: 17611854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical and histomorphometric study on the bone-screw interface of bioactive ceramic-coated titanium screws.
    Lee JH; Ryu HS; Lee DS; Hong KS; Chang BS; Lee CK
    Biomaterials; 2005 Jun; 26(16):3249-57. PubMed ID: 15603820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone growth and modeling changes induced by periosteal stripping in the rat.
    Hernández JA; Serrano S; Mariñoso ML; Aubia J; Lloreta J; Marrugat J; Diez A
    Clin Orthop Relat Res; 1995 Nov; (320):211-9. PubMed ID: 7586829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increase of stability in external fracture fixation by hydroxyapatite-coated bone screws.
    Augat P; Claes L; Hanselmann KF; Suger G; Fleischmann W
    J Appl Biomater; 1995; 6(2):99-104. PubMed ID: 7640445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of anodized oxidation or turned implants on bone healing after using conventional drilling or trabecular compaction technique: histomorphometric analysis and RFA.
    Kim SK; Lee HN; Choi YC; Heo SJ; Lee CW; Choie MK
    Clin Oral Implants Res; 2006 Dec; 17(6):644-50. PubMed ID: 17092222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of bone growth into metal screws implanted in the medullary canal of the femur in rats.
    Hazan R; Oron U
    J Orthop Res; 1993 Sep; 11(5):655-63. PubMed ID: 8410465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw.
    Al-Munajjed AA; Hammer J; Mayr E; Nerlich M; Lenich A
    Stud Health Technol Inform; 2008; 133():1-10. PubMed ID: 18376008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resorbable fillers reduce stress risers from empty screw holes.
    Alford JW; Bradley MP; Fadale PD; Crisco JJ; Moore DC; Ehrlich MG
    J Trauma; 2007 Sep; 63(3):647-54. PubMed ID: 18073615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship of bone blood flow, bone tracer deposition, and endosteal new bone formation.
    McInnis JC; Robb RA; Kelly PJ
    J Lab Clin Med; 1980 Sep; 96(3):511-22. PubMed ID: 7400674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone formation near direct current electrodes with and without motion.
    Spadaro JA; Albanese SA; Chase SE
    J Orthop Res; 1992 Sep; 10(5):729-38. PubMed ID: 1500985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strontium retention in mouse foetuses at different intervals after contamination of the dam.
    Rönnbäck C
    Acta Radiol Oncol; 1986; 25(2):155-9. PubMed ID: 3012961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of low temperature on the excretion of radiocesium and radioruthenium compared with radiostrontium.
    Nilsson A; Rönnbäck C
    Acta Oncol; 1988; 27(3):289-92. PubMed ID: 3415859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical stimulation of osteogenesis: studies of the cathode effect on rabbit femur.
    Petersson CJ; Holmer NG; Johnell O
    Acta Orthop Scand; 1982 Oct; 53(5):727-32. PubMed ID: 7136582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Distribution of the areas of osteogenesis in spongy bone of femurs of dogs of various ages].
    Lozupone E; Armenise F
    Boll Soc Ital Biol Sper; 1977 Jul; 53(13):1061-7. PubMed ID: 597437
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.