BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35815956)

  • 1. Identification of Pathogens and Evaluation of Resistance and Genetic Diversity of Maize Inbred Lines to Stalk Rot in Heilongjiang Province, China.
    Liu J; Han Y; Li W; Qi T; Zhang J; Li Y
    Plant Dis; 2023 Feb; 107(2):288-297. PubMed ID: 35815956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification, Pathogenicity, and Genetic Diversity of
    Yang X; Xu X; Wang S; Zhang L; Shen G; Teng H; Yang C; Song C; Xiang W; Wang X; Zhao J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of maize resistance to Fusarium graminearum.
    Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q
    BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an inoculation technique for rapidly evaluating maize inbred lines for resistance to stalk rot caused by
    Jiang W; Han W; Wang R; Li Y; Hu G; Yang J; Jiang D; Han W; Wang M; Li G
    Plant Dis; 2020 Dec; ():. PubMed ID: 33373281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by
    Zhang X; Zheng S; Yu M; Xu C; Li Y; Sun L; Hu G; Yang J; Qiu X
    Plant Dis; 2024 Feb; 108(2):348-358. PubMed ID: 37443398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants.
    Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F
    Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of Fusarium temperatum Causing Seedling Blight and Stalk Rot on Maize in Spain.
    Varela CP; Casal OA; Padin MC; Martinez VF; Oses MJS; Scauflaire J; Munaut F; Castro MJB; Vázquez JPM
    Plant Dis; 2013 Sep; 97(9):1252. PubMed ID: 30722434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by
    Sun J; Wang Y; Zhang X; Cheng Z; Song Y; Li H; Wang N; Liu S; Cao Z; Li H; Zheng W; Duan C; Cao Y
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012.
    Fu M; Li R; Guo C; Pang M; Liu Y; Dong J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):503-11. PubMed ID: 25315450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stalk rot species diversity and molecular phylogeny associated with diseased maize in India.
    Harish J; Venkateshbabu G; Prasannakumar MK; Devanna P; Mahesh HB; Balasundara DC; Swamy SD; Kunjeti SG; Manjunatha C; Puneeth ME; Lohithaswa HC; Jambhulkar PP
    World J Microbiol Biotechnol; 2024 Apr; 40(6):185. PubMed ID: 38683236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of Fusarium temperatum Causing Fusarium Ear Rot on Maize in Northern China.
    Zhang H; Luo W; Pan Y; Xu J; Xu JS; Chen WQ; Feng J
    Plant Dis; 2014 Sep; 98(9):1273. PubMed ID: 30699668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland.
    Stępień Ł; Gromadzka K; Chełkowski J; Basińska-Barczak A; Lalak-Kańczugowska J
    J Appl Genet; 2019 Feb; 60(1):113-121. PubMed ID: 30430379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species Diversity and Chemotypes of
    Xi K; Shan L; Yang Y; Zhang G; Zhang J; Guo W
    Front Microbiol; 2021; 12():652062. PubMed ID: 34759893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusarium temperatum as a New Species Causing Ear Rot on Maize in Poland.
    Czembor E; Stępień Ł; Waśkiewicz A
    Plant Dis; 2014 Jul; 98(7):1001. PubMed ID: 30708873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize.
    Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M
    Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Relationship Analysis on Corn Stalk Rot and Ear Rot According to
    Li L; Qu Q; Cao Z; Guo Z; Jia H; Liu N; Wang Y; Dong J
    Toxins (Basel); 2019 Jun; 11(6):. PubMed ID: 31195636
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization and Molecular Mapping of Two Novel Genes Resistant to Pythium Stalk Rot in Maize.
    Duan C; Song F; Sun S; Guo C; Zhu Z; Wang X
    Phytopathology; 2019 May; 109(5):804-809. PubMed ID: 30328778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.
    Song FJ; Xiao MG; Duan CX; Li HJ; Zhu ZD; Liu BT; Sun SL; Wu XF; Wang XM
    Mol Genet Genomics; 2015 Aug; 290(4):1543-9. PubMed ID: 25724693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of maize inbred lines and gene expression for resistance to ear rot.
    Pereira GS; Pinho RGV; Pinho EVRV; Pires LPM; Bernardo Junior LAY; Pereira JLA; Melo MP
    Genet Mol Res; 2017 Jul; 16(3):. PubMed ID: 28692118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A major QTL for resistance to Gibberella stalk rot in maize.
    Yang Q; Yin G; Guo Y; Zhang D; Chen S; Xu M
    Theor Appl Genet; 2010 Aug; 121(4):673-87. PubMed ID: 20401458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.