These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35816101)

  • 1. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions.
    Huang H; Steiniger KA; Lambert TH
    J Am Chem Soc; 2022 Jul; 144(28):12567-12583. PubMed ID: 35816101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis.
    Talukdar R
    Org Biomol Chem; 2020 Nov; 18(41):8294-8345. PubMed ID: 33020775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative photoredox catalysis: mild and selective deprotection of PMB ethers mediated by visible light.
    Tucker JW; Narayanam JM; Shah PS; Stephenson CR
    Chem Commun (Camb); 2011 May; 47(17):5040-2. PubMed ID: 21431223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity*.
    Chernowsky CP; Chmiel AF; Wickens ZK
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21418-21425. PubMed ID: 34288312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling.
    Cowper NGW; Chernowsky CP; Williams OP; Wickens ZK
    J Am Chem Soc; 2020 Feb; 142(5):2093-2099. PubMed ID: 31951393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication.
    Huang H; Strater ZM; Rauch M; Shee J; Sisto TJ; Nuckolls C; Lambert TH
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13318-13322. PubMed ID: 31306561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond.
    Chen JR; Hu XQ; Lu LQ; Xiao WJ
    Acc Chem Res; 2016 Sep; 49(9):1911-23. PubMed ID: 27551740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis.
    Chen N; Xu HC
    Chem Rec; 2021 Sep; 21(9):2306-2319. PubMed ID: 33734572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophotochemical Metal-Catalyzed Enantioselective Decarboxylative Cyanation.
    Yang K; Wang Y; Luo S; Fu N
    Chemistry; 2023 Apr; 29(24):e202203962. PubMed ID: 36638008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoredox catalysis using infrared light via triplet fusion upconversion.
    Ravetz BD; Pun AB; Churchill EM; Congreve DN; Rovis T; Campos LM
    Nature; 2019 Jan; 565(7739):343-346. PubMed ID: 30651612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing.
    Millet A; Cesana PT; Sedillo K; Bird MJ; Schlau-Cohen GS; Doyle AG; MacMillan DWC; Scholes GD
    Acc Chem Res; 2022 May; 55(10):1423-1434. PubMed ID: 35471814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocatalysis under Nanoconfinement: A Metal-Free Hybrid Coacervate Nanodroplet as a Catalytic Nanoreactor for Efficient Redox and Photocatalytic Reactions.
    Saini B; Singh S; Mukherjee TK
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51117-51131. PubMed ID: 34669368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible light photocatalysis as a greener approach to photochemical synthesis.
    Yoon TP; Ischay MA; Du J
    Nat Chem; 2010 Jul; 2(7):527-32. PubMed ID: 20571569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A photoredox-neutral Smiles rearrangement of 2-aryloxybenzoic acids.
    Gonzalez-Gomez JC; Ramirez NP; Lana-Villarreal T; Bonete P
    Org Biomol Chem; 2017 Nov; 15(45):9680-9684. PubMed ID: 29119165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.