These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35816184)
21. C18-modified metal-colloid substrates for surface-enhanced Raman detection of trace-level polycyclic aromatic hydrocarbons in aqueous solution. Olson LG; Uibel RH; Harris JM Appl Spectrosc; 2004 Dec; 58(12):1394-400. PubMed ID: 15606950 [TBL] [Abstract][Full Text] [Related]
22. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Cui L; Chen P; Chen S; Yuan Z; Yu C; Ren B; Zhang K Anal Chem; 2013 Jun; 85(11):5436-43. PubMed ID: 23656550 [TBL] [Abstract][Full Text] [Related]
23. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. Zhou Z; Lu J; Wang J; Zou Y; Liu T; Zhang Y; Liu G; Tian Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118250. PubMed ID: 32197231 [TBL] [Abstract][Full Text] [Related]
24. Surface-Enhanced Raman Spectroscopic Investigation of PAHs at a Fe Liu J; Cui W; Sang S; Guan L; Gu K; Wang Y; Wang J Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014177 [TBL] [Abstract][Full Text] [Related]
25. Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor. Gong X; Liao X; Li Y; Cao H; Zhao Y; Li H; Cassidy DP Analyst; 2019 Nov; 144(22):6698-6705. PubMed ID: 31599884 [TBL] [Abstract][Full Text] [Related]
26. Colorimetric detection of polycyclic aromatic hydrocarbons by using gold nanoparticles. Ma CM; Lin LC; Chuang KJ; Hong GB Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120701. PubMed ID: 34896675 [TBL] [Abstract][Full Text] [Related]
27. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Wang C; Gu B; Liu Q; Pang Y; Xiao R; Wang S Int J Nanomedicine; 2018; 13():1159-1178. PubMed ID: 29520142 [TBL] [Abstract][Full Text] [Related]
28. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced raman spectroscopy. Ruan X; Xie L; Liu J; Ge Q; Liu Y; Li K; You W; Huang T; Zhang L J Hazard Mater; 2024 Jan; 462():132702. PubMed ID: 37837774 [TBL] [Abstract][Full Text] [Related]
29. Prepared Sandwich structure WS Liu J; Zheng J; Lu Y; Feng Z; Zhang S; Sun T Food Chem; 2024 Dec; 460(Pt 3):140731. PubMed ID: 39106757 [TBL] [Abstract][Full Text] [Related]
30. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons. Hahm E; Jeong D; Cha MG; Choi JM; Pham XH; Kim HM; Kim H; Lee YS; Jeong DH; Jung S; Jun BH Sci Rep; 2016 May; 6():26082. PubMed ID: 27184729 [TBL] [Abstract][Full Text] [Related]
31. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules. Yan X; Zhao H; Song H; Ma J; Shi X Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121566. PubMed ID: 35841855 [TBL] [Abstract][Full Text] [Related]
32. Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Zheng C; Zhang L; Wang F; Cai Y; Du S; Zhang Z Talanta; 2018 Oct; 188():630-636. PubMed ID: 30029423 [TBL] [Abstract][Full Text] [Related]
33. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Ren W; Zhu C; Wang E Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096 [TBL] [Abstract][Full Text] [Related]
34. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
35. Ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons from water samples with a magnetic polyaniline modified graphene oxide nanocomposite. Manousi N; Deliyanni EA; Rosenberg E; Zachariadis GA J Chromatogr A; 2021 May; 1645():462104. PubMed ID: 33857676 [TBL] [Abstract][Full Text] [Related]
36. Presence, distribution and risk assessment of polycyclic aromatic hydrocarbons in rice-wheat continuous cropping soils close to five industrial parks of Suzhou, China. Li Y; Long L; Ge J; Yang LX; Cheng JJ; Sun LX; Lu C; Yu XY Chemosphere; 2017 Oct; 184():753-761. PubMed ID: 28641227 [TBL] [Abstract][Full Text] [Related]
37. A polythiophene-silver nanocomposite for headspace needle trap extraction. Bagheri H; Banihashemi S; Jelvani S J Chromatogr A; 2016 Aug; 1460():1-8. PubMed ID: 27448719 [TBL] [Abstract][Full Text] [Related]
38. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Liu X; Lu X; Huang Y; Liu C; Zhao S Talanta; 2014 Feb; 119():341-7. PubMed ID: 24401423 [TBL] [Abstract][Full Text] [Related]
39. Fast Detection of Different Water Contaminants by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy. Almaviva S; Artuso F; Giardina I; Lai A; Pasquo A Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366036 [TBL] [Abstract][Full Text] [Related]
40. The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea). Pfannkuche J; Lubecki L; Schmidt H; Kowalewska G; Kronfeldt HD Mar Pollut Bull; 2012 Mar; 64(3):614-26. PubMed ID: 22248648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]