These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35816506)

  • 1. Design of Three-Dimensional Metallic Biphenylene Networks for Na-Ion Battery Anodes with a Record High Capacity.
    Obeid MM; Ni D; Du PH; Sun Q
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32043-32055. PubMed ID: 35816506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biphenylene nanoribbon-based 3D metallic and ductile carbon allotrope.
    Sun W; Shen Y; Ni D; Wang Q
    Nanoscale; 2022 Mar; 14(10):3801-3807. PubMed ID: 35191443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the potential of a BCN-biphenylene monolayer as a high-performance anode material for alkali metal ion batteries: a first-principles study.
    Kumar A; Parida P
    Nanoscale; 2024 Jul; 16(27):13131-13147. PubMed ID: 38912560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphenylene network as sodium ion battery anode material.
    Chen XW; Lin ZZ; Li XM
    Phys Chem Chem Phys; 2023 Feb; 25(5):4340-4348. PubMed ID: 36689257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphenylene monolayer: a novel nonbenzenoid carbon allotrope with potential application as an anode material for high-performance sodium-ion batteries.
    Han T; Liu Y; Lv X; Li F
    Phys Chem Chem Phys; 2022 May; 24(18):10712-10716. PubMed ID: 35502863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sp-sp
    Lee S; Koo J; Park M; Lee H
    ACS Omega; 2018 Oct; 3(10):14477-14481. PubMed ID: 31458133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Porous h-BC
    Li L; Li X; Li X; Chen H; Liu H; Chen J; Zhang Y
    J Phys Chem Lett; 2022 Mar; 13(10):2348-2355. PubMed ID: 35254063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembling Si
    Younis U; Muhammad I; Wu W; Ahmed S; Sun Q; Jena P
    Nanoscale; 2020 Oct; 12(37):19367-19374. PubMed ID: 32945313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpenetrating graphene network bct-C
    Yu S; Wang Z; Xiong L; Xiong W; Ouyang C
    Phys Chem Chem Phys; 2019 Nov; 21(42):23485-23491. PubMed ID: 31616886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional TiCl
    Zhu HY; Ye XJ; Meng L; Zheng XH; Jia R; Liu CS
    Phys Chem Chem Phys; 2023 Apr; 25(16):11513-11521. PubMed ID: 37039312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries.
    Huang J; Callender KIE; Qin K; Girgis M; Paige M; Yang Z; Clayborne AZ; Luo C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40784-40792. PubMed ID: 36049020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical prediction of T-graphene as a promising alkali-ion battery anode offering ultrahigh capacity.
    Hu J; Liu Y; Liu N; Li J; Ouyang C
    Phys Chem Chem Phys; 2020 Feb; 22(6):3281-3289. PubMed ID: 31970357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphenylene and Phagraphene as Lithium Ion Battery Anode Materials.
    Ferguson D; Searles DJ; Hankel M
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20577-20584. PubMed ID: 28562009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Standing Film Assembled using SnS-Sn/Multiwalled Carbon Nanotubes Encapsulated Carbon Fibers: A Potential Large-Scale Production Material for Ultra-stable Sodium-Ion Battery Anodes.
    Sun Y; Yang Y; Shi XL; Suo G; Chen H; Hou X; Lu S; Chen ZG
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28359-28368. PubMed ID: 34106683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the interaction between heteroatom-doped carbon matrix and Sb
    Jaramillo-Quintero OA; Barrera-Peralta RV; El Hachimi AG; Guillén-López A; Pérez O; Reguera E; Rincón ME; Muñiz J
    J Colloid Interface Sci; 2021 Mar; 585():649-659. PubMed ID: 33153713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-Expansion of Assembled Reduced Graphene Oxide Interlayers by Segregation of Al Nanoparticle Pillars for High-Capacity Na-Ion Battery Anodes.
    Pyo S; Eom W; Kim YJ; Lee SH; Han TH; Ryu WH
    ACS Appl Mater Interfaces; 2020 May; 12(21):23781-23788. PubMed ID: 32365288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion.
    Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS
    Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Volumetric and Gravimetric Capacity Electrodeposited Mesostructured Sb
    Kim S; Qu S; Zhang R; Braun PV
    Small; 2019 Jun; 15(23):e1900258. PubMed ID: 31026117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and optical properties of hydrogen-terminated biphenylene nanoribbons: a first-principles study.
    Shen H; Yang R; Xie K; Yu Z; Zheng Y; Zhang R; Chen L; Wu BR; Su WS; Wang S
    Phys Chem Chem Phys; 2021 Dec; 24(1):357-365. PubMed ID: 34889935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.