These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35816533)

  • 21. Rapid TAURUS for Relaxation-Based Color Magnetic Particle Imaging.
    Arslan MT; Ozaslan AA; Kurt S; Muslu Y; Saritas EU
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3774-3786. PubMed ID: 35921341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model-based reconstruction for magnetic particle imaging.
    Knopp T; Sattel TF; Biederer S; Rahmer J; Weizenecker J; Gleich B; Borgert J; Buzug TM
    IEEE Trans Med Imaging; 2010 Jan; 29(1):12-8. PubMed ID: 19435678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.
    Zhao J; Shen Y; Liu X; Hou X; Ding X; An Y; Hui H; Tian J; Zhang H
    Med Phys; 2024 May; ():. PubMed ID: 38700948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix.
    Chen X; Jiang Z; Han X; Wang X; Tang X
    Diagnostics (Basel); 2021 Apr; 11(5):. PubMed ID: 33925830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic residual Kaczmarz method for noise reducing reconstruction in magnetic particle imaging.
    Zhang P; Liu J; Li Y; Zhu T; Yin L; An Y; Zhong J; Hui H; Tian J
    Phys Med Biol; 2023 Jul; 68(14):. PubMed ID: 37339656
    [No Abstract]   [Full Text] [Related]  

  • 26. Deep learning for improving the spatial resolution of magnetic particle imaging.
    Shang Y; Liu J; Zhang L; Wu X; Zhang P; Yin L; Hui H; Tian J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35533677
    [No Abstract]   [Full Text] [Related]  

  • 27. Residual dense network for medical magnetic resonance images super-resolution.
    Zhu D; Qiu D
    Comput Methods Programs Biomed; 2021 Sep; 209():106330. PubMed ID: 34388684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weighted sum of harmonic signals for direct imaging in magnetic particle imaging.
    Liu Y; Hui H; Liu S; Li G; Zhang B; Zhong J; An Y; Tian J
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36573436
    [No Abstract]   [Full Text] [Related]  

  • 29. Super-Resolution Ultrasound Imaging Scheme Based on a Symmetric Series Convolutional Neural Network.
    Tamang LD; Kim BW
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic separation of iron oxide nanoparticles to improve their application for magnetic particle imaging.
    Arsalani S; Löwa N; Kosch O; Radon P; Baffa O; Wiekhorst F
    Phys Med Biol; 2021 Jan; 66(1):015002. PubMed ID: 33227720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sparse reconstruction of the magnetic particle imaging system matrix.
    Knopp T; Weber A
    IEEE Trans Med Imaging; 2013 Aug; 32(8):1473-80. PubMed ID: 23591480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach.
    Dieckhoff J; Kaul MG; Mummert T; Jung C; Salamon J; Adam G; Knopp T; Ludwig F; Balceris C; Ittrich H
    Phys Med Biol; 2017 May; 62(9):3470-3482. PubMed ID: 28035904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super-Resolution Magnetic Resonance Imaging of the Knee Using 2-Dimensional Turbo Spin Echo Imaging.
    Van Dyck P; Smekens C; Vanhevel F; De Smet E; Roelant E; Sijbers J; Jeurissen B
    Invest Radiol; 2020 Aug; 55(8):481-493. PubMed ID: 32404629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bimodal intravascular volumetric imaging combining OCT and MPI.
    Latus S; Griese F; Schlüter M; Otte C; Möddel M; Graeser M; Saathoff T; Knopp T; Schlaefer A
    Med Phys; 2019 Mar; 46(3):1371-1383. PubMed ID: 30657597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct multi-dimensional Chebyshev polynomial based reconstruction for magnetic particle imaging.
    Droigk C; Maass M; Mertins A
    Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35038678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging.
    Lauzier PT; Tang J; Speidel MA; Chen GH
    Med Phys; 2012 Jul; 39(7):4079-92. PubMed ID: 22830741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Content-Noise Feature Fusion Neural Network for Image Denoising in Magnetic Particle Imaging
    Wang T; Zhang L; Wei Z; Shen Y; Tian J; Hui H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bare-Metal Stent Tracking with Magnetic Particle Imaging.
    Wegner F; Friedrich T; Wattenberg M; Ackers J; Sieren MM; Kloeckner R; Barkhausen J; Buzug TM; Graeser M; von Gladiss A
    Int J Nanomedicine; 2024; 19():2137-2148. PubMed ID: 38476277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multidimensional x-space magnetic particle imaging.
    Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1581-90. PubMed ID: 21402508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gradient-Based Pulsed Excitation and Relaxation Encoding in Magnetic Particle Imaging.
    Jia G; Huang L; Wang Z; Liang X; Zhang Y; Zhang Y; Miao Q; Hu K; Li T; Wang Y; Xi L; Feng X; Hui H; Tian J
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3725-3733. PubMed ID: 35862339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.