BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

739 related articles for article (PubMed ID: 35816578)

  • 1. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
    Van Stappen C; Deng Y; Liu Y; Heidari H; Wang JX; Zhou Y; Ledray AP; Lu Y
    Chem Rev; 2022 Jul; 122(14):11974-12045. PubMed ID: 35816578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Heteronuclear Metalloenzymes.
    Bhagi-Damodaran A; Hosseinzadeh P; Mirts E; Reed J; Petrik ID; Lu Y
    Methods Enzymol; 2016; 580():501-37. PubMed ID: 27586347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic activity mastered by altering metal coordination spheres.
    Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2008 Nov; 13(8):1185-95. PubMed ID: 18719950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective.
    Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial metalloenzymes constructed from hierarchically-assembled proteins.
    Ueno T; Tabe H; Tanaka Y
    Chem Asian J; 2013 Aug; 8(8):1646-60. PubMed ID: 23704077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.