These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35816614)

  • 21. Paper-Based SERS Sensing Platform Based on 3D Silver Dendrites and Molecularly Imprinted Identifier Sandwich Hybrid for Neonicotinoid Quantification.
    Zhao P; Liu H; Zhang L; Zhu P; Ge S; Yu J
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8845-8854. PubMed ID: 31989810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermally stable plasmonic nanocermets grown on microengineered surfaces as versatile surface enhanced Raman spectroscopy sensors for multianalyte detection.
    Gupta N; Gupta D; Aggarwal S; Siddhanta S; Narayana C; Barshilia HC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22733-42. PubMed ID: 25456045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces.
    Bauman SJ; Darweesh AA; Furr M; Magee M; Argyropoulos C; Herzog JB
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15541-15548. PubMed ID: 35344345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene Oxide-Coated Metal-Insulator-Metal SERS Substrates for Trace Melamine Detection.
    Wang Z; Liu J; Wang J; Ma Z; Kong D; Jiang S; Luo D; Liu YJ
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health.
    Zhu W; Hutchison JA; Dong M; Li M
    ACS Sens; 2021 May; 6(5):1704-1716. PubMed ID: 33939402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Giant Chemical and Excellent Synergistic Raman Enhancement from a 3D MoS
    Pramanik A; Gao Y; Gates K; Begum S; Ray PC
    ACS Omega; 2019 Jun; 4(6):11112-11118. PubMed ID: 31460209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials.
    Xu Y; Zhang Y; Li C; Ye Z; Bell SEJ
    Acc Chem Res; 2023 Aug; 56(15):2072-2083. PubMed ID: 37436068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection.
    Kim S; Mun C; Choi DG; Jung HS; Kim DH; Kim SH; Park SG
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32422860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alizarin Dye based ultrasensitive plasmonic SERS probe for trace level Cadmium detection in drinking water.
    Dasary SS; Zones YK; Barnes SL; Ray PC; Singh AK
    Sens Actuators B Chem; 2016 Mar; 224():65-72. PubMed ID: 26770012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials.
    Lee HK; Lee YH; Koh CSL; Phan-Quang GC; Han X; Lay CL; Sim HYF; Kao YC; An Q; Ling XY
    Chem Soc Rev; 2019 Feb; 48(3):731-756. PubMed ID: 30475351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling.
    Yang L; Fu C; Wang H; Xu S; Xu W
    Anal Bioanal Chem; 2017 Jan; 409(1):235-242. PubMed ID: 27796455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SERS-based detection in an optofluidic ring resonator platform.
    White IM; Gohring J; Fan X
    Opt Express; 2007 Dec; 15(25):17433-42. PubMed ID: 19551037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing.
    Höller RPM; Jahn IJ; Cialla-May D; Chanana M; Popp J; Fery A; Kuttner C
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57302-57313. PubMed ID: 33306362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms.
    Zhang H; Wang R; Sikdar D; Wu L; Sun J; Gu N; Chen Y
    ACS Sens; 2022 Feb; 7(2):622-631. PubMed ID: 35157439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures.
    Ly NH; Son SJ; Jang S; Lee C; Lee JI; Joo SW
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grooved nanoplate assembly for rapid detection of surface enhanced Raman scattering.
    Liu X; Wu D; Chang Q; Zhou J; Zhang Y; Wang Z
    Nanoscale; 2017 Oct; 9(40):15390-15396. PubMed ID: 28975951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.