BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35816807)

  • 1. Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives.
    Wu X; Zhou Q; Mu L; Hu X
    J Hazard Mater; 2022 Sep; 438():129487. PubMed ID: 35816807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Computational Toxicology by Interpretable Machine Learning.
    Jia X; Wang T; Zhu H
    Environ Sci Technol; 2023 Nov; 57(46):17690-17706. PubMed ID: 37224004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems.
    Liu X; Lu D; Zhang A; Liu Q; Jiang G
    Environ Sci Technol; 2022 Feb; 56(4):2124-2133. PubMed ID: 35084840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning and Artificial Intelligence in Toxicological Sciences.
    Lin Z; Chou WC
    Toxicol Sci; 2022 Aug; 189(1):7-19. PubMed ID: 35861448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in computational toxicology.
    Ekins S
    J Pharmacol Toxicol Methods; 2014; 69(2):115-40. PubMed ID: 24361690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence (AI)-it's the end of the tox as we know it (and I feel fine).
    Kleinstreuer N; Hartung T
    Arch Toxicol; 2024 Mar; 98(3):735-754. PubMed ID: 38244040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knowledge discovery and data mining in toxicology.
    Helma C; Gottmann E; Kramer S
    Stat Methods Med Res; 2000 Aug; 9(4):329-58. PubMed ID: 11084712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology.
    Moukheiber L; Mangione W; Moukheiber M; Maleki S; Falls Z; Gao M; Samudrala R
    Molecules; 2022 May; 27(9):. PubMed ID: 35566372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Approaches to Identify Structural Alerts and Their Applications in Environmental Toxicology and Drug Discovery.
    Yang H; Lou C; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2020 Jun; 33(6):1312-1322. PubMed ID: 32091207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning for predicting human skin sensitizers.
    Tung CW; Lin YH; Wang SS
    Arch Toxicol; 2019 Apr; 93(4):931-940. PubMed ID: 30806762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry.
    Xia D; Chen J; Fu Z; Xu T; Wang Z; Liu W; Xie HB; Peijnenburg WJGM
    Environ Sci Technol; 2022 Feb; 56(4):2115-2123. PubMed ID: 35084191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning may accelerate the recognition and control of microplastic pollution: Future prospects.
    Yu F; Hu X
    J Hazard Mater; 2022 Jun; 432():128730. PubMed ID: 35338937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning.
    Taoufik N; Boumya W; Achak M; Chennouk H; Dewil R; Barka N
    Sci Total Environ; 2022 Feb; 807(Pt 1):150554. PubMed ID: 34597573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Kienzler A; Paini A; Pant R; Radovnikovic A; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3463-3470. PubMed ID: 28671290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational approaches to chemical hazard assessment.
    Luechtefeld T; Hartung T
    ALTEX; 2017; 34(4):459-478. PubMed ID: 29101769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Environmental Disease Network: A computational model to assess toxicology of contaminants.
    Taboureau O; Audouze K
    ALTEX; 2017; 34(2):289-300. PubMed ID: 27768803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the InTelligence And Machine LEarning (TAME) Toolkit for Introductory Data Science, Chemical-Biological Analyses, Predictive Modeling, and Database Mining for Environmental Health Research.
    Roell K; Koval LE; Boyles R; Patlewicz G; Ring C; Rider CV; Ward-Caviness C; Reif DM; Jaspers I; Fry RC; Rager JE
    Front Toxicol; 2022; 4():893924. PubMed ID: 35812168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions.
    Meng L; Zhou B; Liu H; Chen Y; Yuan R; Chen Z; Luo S; Chen H
    Sci Total Environ; 2024 Jun; 946():174201. PubMed ID: 38936709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.