BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35816807)

  • 21. Application of machine learning in the study of development, behavior, nerve, and genotoxicity of zebrafish.
    Wang R; Wang B; Chen A
    Environ Pollut; 2024 Jun; ():124473. PubMed ID: 38945191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A research to develop a predicting system of mammalian subacute toxicity. I. Prediction of subacute toxicity using the biological parameters of acute toxicities.
    Yamaguchi T; Nishimura H; Watanabe T; Saito S; Yabuki M; Shiba K; Isobe N; Kishida F; Kumano M; Shono F; Adachi H; Matsuo M
    Chemosphere; 1996 Mar; 32(5):979-98. PubMed ID: 8867144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of "Omics" Approaches Directed to Toxicant Mixtures.
    Martins C; Dreij K; Costa PM
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31779274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical features identification for chemical chronic toxicity based on mechanistic forecast models.
    Wang X; Li F; Chen J; Teng Y; Ji C; Wu H
    Environ Pollut; 2022 Aug; 307():119584. PubMed ID: 35688391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation.
    Vo AH; Van Vleet TR; Gupta RR; Liguori MJ; Rao MS
    Chem Res Toxicol; 2020 Jan; 33(1):20-37. PubMed ID: 31625725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning: its challenges and opportunities in plant system biology.
    Hesami M; Alizadeh M; Jones AMP; Torkamaneh D
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3507-3530. PubMed ID: 35575915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods.
    Zhao P; Peng Y; Xu X; Wang Z; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2021 Oct; 41(10):1518-1526. PubMed ID: 33469990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Data-Driven Elucidation of Flavor Chemistry.
    Kou X; Shi P; Gao C; Ma P; Xing H; Ke Q; Zhang D
    J Agric Food Chem; 2023 May; 71(18):6789-6802. PubMed ID: 37102791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current knowledge and availability of machine learning across the spectrum of trauma science.
    Gauss T; Perkins Z; Tjardes T
    Curr Opin Crit Care; 2023 Dec; 29(6):713-721. PubMed ID: 37861197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning for Environmental Toxicology: A Call for Integration and Innovation.
    Miller TH; Gallidabino MD; MacRae JI; Hogstrand C; Bury NR; Barron LP; Snape JR; Owen SF
    Environ Sci Technol; 2018 Nov; 52(22):12953-12955. PubMed ID: 30338686
    [No Abstract]   [Full Text] [Related]  

  • 36. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology.
    Groh KJ; Carvalho RN; Chipman JK; Denslow ND; Halder M; Murphy CA; Roelofs D; Rolaki A; Schirmer K; Watanabe KH
    Chemosphere; 2015 Feb; 120():764-77. PubMed ID: 25439131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. When Are Adverse Outcome Pathways and Associated Assays "Fit for Purpose" for Regulatory Decision-Making and Management of Chemicals?
    Coady K; Browne P; Embry M; Hill T; Leinala E; Steeger T; Maƛlankiewicz L; Hutchinson T
    Integr Environ Assess Manag; 2019 Jul; 15(4):633-647. PubMed ID: 30908812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental toxicology and omics: A question of sex.
    Liang X; Feswick A; Simmons D; Martyniuk CJ
    J Proteomics; 2018 Feb; 172():152-164. PubMed ID: 29037750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-World Evidence, Causal Inference, and Machine Learning.
    Crown WH
    Value Health; 2019 May; 22(5):587-592. PubMed ID: 31104739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.