These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35816807)

  • 41. The method for breast cancer grade prediction and pathway analysis based on improved multiple kernel learning.
    Song T; Wang Y; Du W; Cao S; Tian Y; Liang Y
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650037. PubMed ID: 27899048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GGL-Tox: Geometric Graph Learning for Toxicity Prediction.
    Jiang J; Wang R; Wei GW
    J Chem Inf Model; 2021 Apr; 61(4):1691-1700. PubMed ID: 33719422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The promise of toxicogenomics for genetic toxicology: past, present and future.
    David R
    Mutagenesis; 2020 Mar; 35(2):153-159. PubMed ID: 32087008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prospects and challenges of multi-omics data integration in toxicology.
    Canzler S; Schor J; Busch W; Schubert K; Rolle-Kampczyk UE; Seitz H; Kamp H; von Bergen M; Buesen R; Hackermüller J
    Arch Toxicol; 2020 Feb; 94(2):371-388. PubMed ID: 32034435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predictive Systems Toxicology.
    Kiani NA; Shang MM; Zenil H; Tegner J
    Methods Mol Biol; 2018; 1800():535-557. PubMed ID: 29934910
    [TBL] [Abstract][Full Text] [Related]  

  • 46. IoT enabled environmental toxicology for air pollution monitoring using AI techniques.
    Asha P; Natrayan L; Geetha BT; Beulah JR; Sumathy R; Varalakshmi G; Neelakandan S
    Environ Res; 2022 Apr; 205():112574. PubMed ID: 34919959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning for predicting toxicity of chemicals: a mini review.
    Tang W; Chen J; Wang Z; Xie H; Hong H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward sustainable environmental quality: Identifying priority research questions for Latin America.
    Furley TH; Brodeur J; Silva de Assis HC; Carriquiriborde P; Chagas KR; Corrales J; Denadai M; Fuchs J; Mascarenhas R; Miglioranza KS; Miguez Caramés DM; Navas JM; Nugegoda D; Planes E; Rodriguez-Jorquera IA; Orozco-Medina M; Boxall AB; Rudd MA; Brooks BW
    Integr Environ Assess Manag; 2018 May; 14(3):344-357. PubMed ID: 29469193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Big-data and machine learning to revamp computational toxicology and its use in risk assessment.
    Luechtefeld T; Rowlands C; Hartung T
    Toxicol Res (Camb); 2018 Sep; 7(5):732-744. PubMed ID: 30310652
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives.
    Dercle L; Henry T; Carré A; Paragios N; Deutsch E; Robert C
    Methods; 2021 Apr; 188():44-60. PubMed ID: 32697964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point.
    Cavasotto CN; Scardino V
    ACS Omega; 2022 Dec; 7(51):47536-47546. PubMed ID: 36591139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Omics for aquatic ecotoxicology: control of extraneous variability to enhance the analysis of environmental effects.
    Simmons DB; Benskin JP; Cosgrove JR; Duncker BP; Ekman DR; Martyniuk CJ; Sherry JP
    Environ Toxicol Chem; 2015 Aug; 34(8):1693-704. PubMed ID: 25827364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toxicological information on chemicals published in the Russian language: Contribution to REACH and 3Rs.
    Sihtmäe M; Dubourguier HC; Kahru A
    Toxicology; 2009 Jul; 262(1):27-37. PubMed ID: 19433131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of mechanistic and pharmacokinetic data for risk assessment at the National Institute of Environmental Health Sciences (NIEHS).
    Schwetz BA
    Toxicol Lett; 1995 Sep; 79(1-3):29-32. PubMed ID: 7570667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A systematic review of data mining and machine learning for air pollution epidemiology.
    Bellinger C; Mohomed Jabbar MS; Zaïane O; Osornio-Vargas A
    BMC Public Health; 2017 Nov; 17(1):907. PubMed ID: 29179711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxicogenomics in Environmental Science.
    Brinke A; Buchinger S
    Adv Biochem Eng Biotechnol; 2017; 157():159-186. PubMed ID: 27864593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine learning methods, databases and tools for drug combination prediction.
    Wu L; Wen Y; Leng D; Zhang Q; Dai C; Wang Z; Liu Z; Yan B; Zhang Y; Wang J; He S; Bo X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34477201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Machine learning meets omics: applications and perspectives.
    Li R; Li L; Xu Y; Yang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology.
    Louzon M; Coeurdassier M; Gimbert F; Pauget B; de Vaufleury A
    Environ Int; 2019 Oct; 131():105025. PubMed ID: 31352262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.