These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35817011)

  • 1. Time stability and connectivity analysis with an intracortical 96-channel microelectrode array inserted in human visual cortex.
    Grani F; Soto-Sanchez C; Farfan FD; Alfaro A; Grima MD; Rodil Doblado A; Fernández E
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35817011
    [No Abstract]   [Full Text] [Related]  

  • 2. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex.
    Fernández E; Alfaro A; Soto-Sánchez C; Gonzalez-Lopez P; Lozano AM; Peña S; Grima MD; Rodil A; Gómez B; Chen X; Roelfsema PR; Rolston JD; Davis TS; Normann RA
    J Clin Invest; 2021 Dec; 131(23):. PubMed ID: 34665780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation.
    Torab K; Davis TS; Warren DJ; House PA; Normann RA; Greger B
    J Neural Eng; 2011 Jun; 8(3):035001. PubMed ID: 21593550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys.
    Chen X; Wang F; Kooijmans R; Klink PC; Boehler C; Asplund M; Roelfsema PR
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37386891
    [No Abstract]   [Full Text] [Related]  

  • 6. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque.
    Davis TS; Parker RA; House PA; Bagley E; Wendelken S; Normann RA; Greger B
    J Neural Eng; 2012 Dec; 9(6):065003. PubMed ID: 23186948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracortical current steering shifts the location of evoked neural activity.
    Meikle SJ; Hagan MA; Price NSC; Wong YT
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688125
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats.
    Lu Y; Yan Y; Chai X; Ren Q; Chen Y; Li L
    J Neural Eng; 2013 Jun; 10(3):036022. PubMed ID: 23665847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice.
    Chen K; Forrest AM; Burgos GG; Kozai TDY
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38788704
    [No Abstract]   [Full Text] [Related]  

  • 11. An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    ANZ J Surg; 2004 May; 74(5):372-8. PubMed ID: 15144260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical visual prostheses: from microstimulation to functional percept.
    Najarpour Foroushani A; Pack CC; Sawan M
    J Neural Eng; 2018 Apr; 15(2):021005. PubMed ID: 29350199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array).
    Rosenfeld JV; Wong YT; Yan E; Szlawski J; Mohan A; Clark JC; Rosa M; Lowery A
    J Neural Eng; 2020 Jul; 17(4):046001. PubMed ID: 32554869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of cortical visual prostheses microelectrode array function. Description of behavioral feline model.
    Ivanova ME; Gordeev SA; Ortmann VV; Baziyan BKh
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3371-4. PubMed ID: 19163432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postmortem investigation of a human cortical visual prosthesis that was implanted for 36 years.
    Towle VL; Pytel P; Lane F; Plass J; Frim DM; Troyk PR
    J Neural Eng; 2020 Jul; 17(4):045010. PubMed ID: 32541097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to a cortical vision prosthesis: implications of electrode size and placement.
    Christie BP; Ashmont KR; House PA; Greger B
    J Neural Eng; 2016 Apr; 13(2):025003. PubMed ID: 26905379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual sensations produced by intracortical microstimulation of the human occipital cortex.
    Bak M; Girvin JP; Hambrecht FT; Kufta CV; Loeb GE; Schmidt EM
    Med Biol Eng Comput; 1990 May; 28(3):257-9. PubMed ID: 2377008
    [No Abstract]   [Full Text] [Related]  

  • 18. Configuring intracortical microelectrode arrays and stimulus parameters to minimize neuron loss during prolonged intracortical electrical stimulation.
    McCreery D; Han M; Pikov V; Miller C
    Brain Stimul; 2021; 14(6):1553-1562. PubMed ID: 34678487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days.
    Hughes CL; Flesher SN; Weiss JM; Downey JE; Boninger M; Collinger JL; Gaunt RA
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34320481
    [No Abstract]   [Full Text] [Related]  

  • 20. Flexible Polymer Electrodes for Stable Prosthetic Visual Perception in Mice.
    Orlemann C; Boehler C; Kooijmans RN; Li B; Asplund M; Roelfsema PR
    Adv Healthc Mater; 2024 Jun; 13(15):e2304169. PubMed ID: 38324245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.