These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35817103)

  • 1. Trophic transfer and environmental safety of carbon dots from microalgae to Daphnia.
    Liu Y; Ma Y; Chen M; Zhou T; Ji R; Guo R; Chen J
    Sci Total Environ; 2022 Oct; 844():157201. PubMed ID: 35817103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioaccumulation, elimination, and trophic transfer of BDE-47 in the aquatic food chain of Chlorella pyrenoidosa-Daphnia magna.
    Liu Y; Feng Y; Li J; Zhou D; Guo R; Ji R; Chen J
    Environ Pollut; 2020 Mar; 258():113720. PubMed ID: 31831226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways.
    Li Y; Ma Y; Yang L; Duan S; Zhou F; Chen J; Liu Y; Zhang B
    Ecotoxicol Environ Saf; 2020 Jul; 197():110573. PubMed ID: 32278825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.
    Silva BF; Andreani T; Gavina A; Vieira MN; Pereira CM; Rocha-Santos T; Pereira R
    Aquat Toxicol; 2016 Jul; 176():197-207. PubMed ID: 27162069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and Transfer of
    Wang C; Chang XL; Shi Q; Zhang X
    Environ Sci Technol; 2018 Nov; 52(21):12133-12141. PubMed ID: 30335979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of microalgae as sublethal biomarker reveals phototoxicity of oxytetracycline to the crustacean Daphnia magna.
    Peroti L; Huovinen P; Orellana S; Muñoz M; Fuentes R; Gómez I
    Water Res; 2021 Jan; 188():116556. PubMed ID: 33137521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration- and nutrient-dependent cellular responses of microalgae Chlorella pyrenoidosa to perfluorooctanoic acid.
    Hu Y; Meng FL; Hu YY; Habibul N; Sheng GP
    Water Res; 2020 Oct; 185():116248. PubMed ID: 32777597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon quantum dot-induced developmental toxicity in Daphnia magna involves disturbance of symbiotic microorganisms.
    Ma Y; Liu Y; Chen W; Li F; Guo R; Ji R; Chen J
    Sci Total Environ; 2023 Dec; 904():166825. PubMed ID: 37673252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon and Metal Quantum Dots toxicity on the microalgae Chlorella pyrenoidosa.
    Xiao A; Wang C; Chen J; Guo R; Yan Z; Chen J
    Ecotoxicol Environ Saf; 2016 Nov; 133():211-7. PubMed ID: 27467021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food abundance mediates the harmful effects of ZnO nanoparticles on development and early reproductive performance of Daphnia magna.
    Sun Y; Liu Q; Huang J; Li D; Huang Y; Lyu K; Yang Z
    Ecotoxicol Environ Saf; 2022 May; 236():113475. PubMed ID: 35364508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna.
    Zhang F; Wang Z; Song L; Fang H; Wang DG
    Environ Pollut; 2020 Feb; 257():113451. PubMed ID: 31706783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relative importance of water and food as cadmium sources to Daphnia magna Straus.
    Barata C; Markich SJ; Baird DJ; Soares AM
    Aquat Toxicol; 2002 Dec; 61(3-4):143-54. PubMed ID: 12359386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biobased carbon dots production via hydrothermal conversion of microalgae Chlorella pyrenoidosa.
    Zhang J; Xia A; Chen H; Nizami AS; Huang Y; Zhu X; Zhu X; Liao Q
    Sci Total Environ; 2022 Sep; 839():156144. PubMed ID: 35609698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna.
    Politowski I; Wittmers F; Hennig MP; Siebers N; Goffart B; Roß-Nickoll M; Ottermanns R; Schäffer A
    NanoImpact; 2021 Apr; 22():100303. PubMed ID: 35559960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.
    Liu J; Wang WX
    Environ Toxicol Chem; 2015 Dec; 34(12):2824-32. PubMed ID: 26094590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trophic transfer of nanoplastics and di(2-ethylhexyl) phthalate in a freshwater food chain (Chlorella Pyrenoidosa-Daphnia magna-Micropterus salmoides) induced disturbance of lipid metabolism in fish.
    Liao H; Gao D; Kong C; Junaid M; Li Y; Chen X; Zheng Q; Chen G; Wang J
    J Hazard Mater; 2023 Oct; 459():132294. PubMed ID: 37591169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments.
    Balusamy B; Taştan BE; Ergen SF; Uyar T; Tekinay T
    Environ Sci Process Impacts; 2015 Jul; 17(7):1265-70. PubMed ID: 26022751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microplastics can affect the trophic cascade strength and stability of plankton ecosystems via behavior-mediated indirect interactions.
    Pan Y; Long Y; Hui J; Xiao W; Yin J; Li Y; Liu D; Tian Q; Chen L
    J Hazard Mater; 2022 May; 430():128415. PubMed ID: 35149495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.