These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35817795)

  • 1. Sea lions could use multilateration localization for object tracking as tested with bio-inspired whisker arrays.
    Glick R; Muthuramalingam M; Brücker C
    Sci Rep; 2022 Jul; 12(1):11764. PubMed ID: 35817795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seal and Sea lion Whiskers Detect Slips of Vortices Similar as Rats Sense Textures.
    Muthuramalingam M; Bruecker C
    Sci Rep; 2019 Sep; 9(1):12808. PubMed ID: 31488868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinnipeds orient and control their whiskers: a study on Pacific walrus, California sea lion and Harbor seal.
    Milne AO; Smith C; Orton LD; Sullivan MS; Grant RA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 May; 206(3):441-451. PubMed ID: 32077991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. California sea lions employ task-specific strategies for active touch sensing.
    Milne AO; Orton L; Black CH; Jones GC; Sullivan M; Grant RA
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34608932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of whisker control in the California sea lion (Zalophus californianus) during a complex, dynamic sensorimotor task.
    Milne AO; Grant RA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Oct; 200(10):871-9. PubMed ID: 25138923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow sensing by pinniped whiskers.
    Miersch L; Hanke W; Wieskotten S; Hanke FD; Oeffner J; Leder A; Brede M; Witte M; Dehnhardt G
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):3077-84. PubMed ID: 21969689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic trail following in a California sea lion (Zalophus californianus).
    Gläser N; Wieskotten S; Otter C; Dehnhardt G; Hanke W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Feb; 197(2):141-51. PubMed ID: 20959994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavy Whiskers in Wakes: Explaining the Trail-Tracking Capabilities of Whisker Arrays on Seal Muzzles.
    Zheng X; Kamat AM; Cao M; Kottapalli AGP
    Adv Sci (Weinh); 2023 Jan; 10(2):e2203062. PubMed ID: 36403235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth rate and stable carbon and nitrogen isotope trophic discrimination factors of lion and leopard whiskers.
    Mutirwara R; Radloff FGT; Codron D
    Rapid Commun Mass Spectrom; 2018 Jan; 32(1):33-47. PubMed ID: 28971533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.
    Hanke W; Witte M; Miersch L; Brede M; Oeffner J; Michael M; Hanke F; Leder A; Dehnhardt G
    J Exp Biol; 2010 Aug; 213(Pt 15):2665-72. PubMed ID: 20639428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of angle on flow-induced vibrations of pinniped vibrissae.
    Murphy CT; Eberhardt WC; Calhoun BH; Mann KA; Mann DA
    PLoS One; 2013; 8(7):e69872. PubMed ID: 23922834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact.
    Towal RB; Quist BW; Gopal V; Solomon JH; Hartmann MJ
    PLoS Comput Biol; 2011 Apr; 7(4):e1001120. PubMed ID: 21490724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial arrangement of the whiskers of harbor seals (
    Graff MM; Belli HM; Wieskotten S; Bresee CS; Krüger Y; Janssen TL; Dehnhardt G; Hartmann MJZ
    bioRxiv; 2024 Sep; ():. PubMed ID: 38293081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape.
    Dubrovinskaya E; Kebkal V; Kebkal O; Kebkal K; Casari P
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal organization of multi-whisker contact in rats.
    Sachdev RN; Sellien H; Ebner F
    Somatosens Mot Res; 2001; 18(2):91-100. PubMed ID: 11534778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow.
    Yu YSW; Bush NE; Hartmann MJZ
    J Neurosci; 2019 Jul; 39(30):5881-5896. PubMed ID: 31097620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional architecture of the mystacial vibrissae.
    Brecht M; Preilowski B; Merzenich MM
    Behav Brain Res; 1997 Mar; 84(1-2):81-97. PubMed ID: 9079775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of seal whisker morphology: implications for whisker-inspired flow control applications.
    Rinehart A; Shyam V; Zhang W
    Bioinspir Biomim; 2017 Oct; 12(6):066005. PubMed ID: 28840853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa.
    Yang AE; Hartmann MJ
    Front Behav Neurosci; 2016; 10():145. PubMed ID: 27486390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae.
    Dehnhardt G
    J Comp Physiol A; 1994 Dec; 175(6):791-800. PubMed ID: 7807420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.