These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35817887)

  • 1. Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses.
    Ghorbani A; Askari A; Malekan M; Nili-Ahmadabadi M
    Sci Rep; 2022 Jul; 12(1):11754. PubMed ID: 35817887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-guided exploration and experimental assessment of unreported compositions in the quaternary Ti-Zr-Cu-Pd biocompatible metallic glass system.
    Douest Y; Forrest RM; Ter-Ovanessian B; Courtois N; Tancret F; Greer AL; Chevalier J; Fabrègue D
    Acta Biomater; 2024 Feb; 175():411-421. PubMed ID: 38135205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven machine learning prediction of glass transition temperature and the glass-forming ability of metallic glasses.
    Zhang J; Zhao M; Zhong C; Liu J; Hu K; Lin X
    Nanoscale; 2023 Nov; 15(45):18511-18522. PubMed ID: 37946543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-learning improves understanding of glass formation in metallic systems.
    Forrest RM; Greer AL
    Digit Discov; 2022 Aug; 1(4):476-489. PubMed ID: 36091413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in bulk metallic glasses for biomedical applications.
    Li HF; Zheng YF
    Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses.
    Zhang K; Fan M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Nov; 143(18):184502. PubMed ID: 26567672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.
    An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD
    J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glass-Forming Ability, Mechanical Properties, and Energetic Characteristics of ZrCuNiAlNbHfY Bulk Metallic Glasses.
    Yu X; Li J; Zhang K; Zhang H; Wang H; Fang Y; Ma Y; Wang Z; Zhang X; Gai X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition.
    Ding H; Luan H; Bu H; Xu H; Yao K
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses.
    Yang BJ; Lu WY; Zhang JL; Wang JQ; Ma E
    Sci Rep; 2017 Sep; 7(1):11053. PubMed ID: 28887538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability.
    Sun YT; Bai HY; Li MZ; Wang WH
    J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies of the glass-forming ability of model bulk metallic glasses.
    Zhang K; Wang M; Papanikolaou S; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2013 Sep; 139(12):124503. PubMed ID: 24089782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr
    Lu S; Li X; Liang X; He J; Shao W; Li K; Chen J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses.
    Zhang K; Smith WW; Wang M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032311. PubMed ID: 25314450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing.
    Zhang K; Dice B; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Aug; 143(5):054501. PubMed ID: 26254655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Many Bulk Metallic Glasses Are There?
    Li Y; Zhao S; Liu Y; Gong P; Schroers J
    ACS Comb Sci; 2017 Nov; 19(11):687-693. PubMed ID: 28902986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.
    Liu L; Qiu CL; Chen Q; Chan KC; Zhang SM
    J Biomed Mater Res A; 2008 Jul; 86(1):160-9. PubMed ID: 17957719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.
    Laws KJ; Shamlaye KF; Granata D; Koloadin LS; Löffler JF
    Sci Rep; 2017 Jun; 7(1):3400. PubMed ID: 28611455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Fe-Based Bulk Metallic Glasses with Improved Wear Resistance.
    Li YC; Zhang C; Xing W; Guo SF; Liu L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43144-43155. PubMed ID: 30422626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscous Flow of Supercooled Liquid in a Zr-Based Bulk Metallic Glass Synthesized by Additive Manufacturing.
    Kosiba K; Deng L; Scudino S
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.