These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 35818227)

  • 1. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis.
    Zheng Y; Peng L; He Z; Zou Z; Li F; Huang C; Li W
    Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):405-420. PubMed ID: 35818227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of oxidative stress-related genes in sepsis-induced myopathy.
    Zhang N; Huang D; Li X; Yan J; Yan Q; Ge W; Zhou J
    Medicine (Baltimore); 2024 May; 103(18):e37933. PubMed ID: 38701300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of potential biomarkers for sepsis based on neutrophil extracellular trap-related genes.
    Tang J; Lu H; Xie Z; Jia X; Su T; Lin B
    Diagn Microbiol Infect Dis; 2024 Sep; 110(1):116380. PubMed ID: 38852219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock.
    Hu Y; Cheng L; Zhong W; Chen M; Zhang Q
    Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics-Based Study to Investigate Potential Differentially Expressed Genes and miRNAs in Pediatric Sepsis.
    Xie K; Kong S; Li F; Zhang Y; Wang J; Zhao W
    Med Sci Monit; 2020 Jun; 26():e923881. PubMed ID: 32575108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis.
    Cheng Q; Chen X; Wu H; Du Y
    J Transl Med; 2021 Jan; 19(1):18. PubMed ID: 33407587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated miRNA-mRNA network revealing the key molecular characteristics of ossification of the posterior longitudinal ligament.
    Xu G; Liu C; Liang T; Qin Z; Yu CJ; Zhang Z; Jiang J; Chen J; Zhan X
    Medicine (Baltimore); 2020 May; 99(21):e20268. PubMed ID: 32481304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on potential differentially expressed genes in stroke by bioinformatics analysis.
    Yang X; Wang P; Yan S; Wang G
    Neurol Sci; 2022 Feb; 43(2):1155-1166. PubMed ID: 34313877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Diagnostic Signature of Sepsis Based on Bioinformatic Analysis of Gene Expression and Machine Learning.
    Zhao Q; Xu N; Guo H; Li J
    Comb Chem High Throughput Screen; 2022; 25(1):21-28. PubMed ID: 33280594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer.
    Ebadfardzadeh J; Kazemi M; Aghazadeh A; Rezaei M; Shirvaliloo M; Sheervalilou R
    Med Oncol; 2021 Aug; 38(9):114. PubMed ID: 34390411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction of sepsis-associated competing endogenous RNA network based on Gene Expression Omnibus datasets and bioinformatic analysis].
    Mo J; Zhang Z; Chen M; Mao H; Zhu Y; Li Y; Jiang H; Lin P; Chen X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Apr; 33(4):427-432. PubMed ID: 34053485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR‑148 family members are putative biomarkers for sepsis.
    Dong L; Li H; Zhang S; Yang G
    Mol Med Rep; 2019 Jun; 19(6):5133-5141. PubMed ID: 31059023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-Based Data Analysis Reveals Ion Channel-Related Gene Features in COVID-19: A Bioinformatic Approach.
    Zhang H; Feng T
    Biochem Genet; 2023 Apr; 61(2):471-505. PubMed ID: 36104591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis.
    Mou T; Zhu D; Wei X; Li T; Zheng D; Pu J; Guo Z; Wu Z
    World J Surg Oncol; 2017 Mar; 15(1):63. PubMed ID: 28302149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis.
    Han B; Feng D; Yu X; Zhang Y; Liu Y; Zhou L
    Med Sci Monit; 2018 Aug; 24():6059-6069. PubMed ID: 30168505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Key Inflammation-related Genes as Potential Diagnostic Biomarkers of Sepsis.
    Guo P; Wang R; Shen J; Zhang L; Mo W
    Altern Ther Health Med; 2023 Jul; 29(5):24-31. PubMed ID: 37235492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
    Hu Y; Yu Y; Dong H; Jiang W
    PeerJ; 2023; 11():e15437. PubMed ID: 37250717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying differentially expressed genes and miRNAs in Kawasaki disease by bioinformatics analysis.
    Cai Y; Hu W
    Sci Rep; 2022 Dec; 12(1):21879. PubMed ID: 36536067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.