These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 35818567)

  • 41. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.
    Ten A; Lomonosov V; Boukouvala C; Ringe E
    ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment.
    Liu K; Ohodnicki PR; Kong X; Lee SS; Du H
    Nanotechnology; 2019 Oct; 30(40):405704. PubMed ID: 31207594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.
    Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Investigation on the Use of Au@SiO
    Eldridge BK; Gomrok S; Barr JW; Chaffin EA; Fielding L; Sachs C; Stickels K; Williams P; Wang Y
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography.
    Tseng HY; Lee CK; Wu SY; Chi TT; Yang KM; Wang JY; Kiang YW; Yang CC; Tsai MT; Wu YC; Chou HY; Chiang CP
    Nanotechnology; 2010 Jul; 21(29):295102. PubMed ID: 20601768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping the plasmon resonances of metallic nanoantennas.
    Bryant GW; GarcĂ­a de Abajo FJ; Aizpurua J
    Nano Lett; 2008 Feb; 8(2):631-6. PubMed ID: 18189444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.
    Mahmoud MA
    Langmuir; 2013 May; 29(21):6253-61. PubMed ID: 23647422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.
    Li Y; Pan G; Liu Q; Ma L; Xie Y; Zhou L; Hao Z; Wang Q
    Chemphyschem; 2018 Jun; ():. PubMed ID: 29863808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hybrid Metal-Dielectric-Metal Sandwiches for SERS Applications.
    Tatmyshevskiy MK; Yakubovsky DI; Kapitanova OO; Solovey VR; Vyshnevyy AA; Ermolaev GA; Klishin YA; Mironov MS; Voronov AA; Arsenin AV; Volkov VS; Novikov SM
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells.
    Li K; Clime L; Tay L; Cui B; Geissler M; Veres T
    Anal Chem; 2008 Jul; 80(13):4945-50. PubMed ID: 18507399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
    Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L
    Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulated synthesis of an Au NB-DT@Ag bimetallic core-molecule-shell nanostructure for reliable SERS detection.
    Ren H; Sun Y; Wang J; Qiu H; Zhang S; Zhang Y; Yu X; Hu J; Hu Y
    Anal Methods; 2023 Aug; 15(33):4094-4103. PubMed ID: 37551432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles.
    Chow TH; Li N; Bai X; Zhuo X; Shao L; Wang J
    Acc Chem Res; 2019 Aug; 52(8):2136-2146. PubMed ID: 31368690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimized electromagnetic enhancement and charge transfer in MXene/Au/Cu
    Zhao YX; Zheng ZX; Zhang LS; Feng JR; Ma L; Ding SJ
    Phys Chem Chem Phys; 2023 Jun; 25(22):15209-15218. PubMed ID: 37232126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka.
    Liaw JW; Chen HC; Kuo MK
    Nanoscale Res Lett; 2013 Nov; 8(1):468. PubMed ID: 24206789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.