BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 3581872)

  • 1. Filipin and digitonin studies of cell membrane changes during junction breakdown in the dystrophic rat retinal pigment epithelium.
    Caldwell RB
    Curr Eye Res; 1987 Mar; 6(3):515-26. PubMed ID: 3581872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative study of intramembrane changes during cell junctional breakdown in the dystrophic rat retinal pigment epithelium.
    Caldwell RB; Wade LA; McLaughlin BJ
    Exp Cell Res; 1984 Jan; 150(1):104-17. PubMed ID: 6692842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas.
    Caldwell RB; McLaughlin BJ
    J Comp Neurol; 1985 Jun; 236(4):523-37. PubMed ID: 4056101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative freeze-fracture and filipin-binding study of retinal pigment epithelial-cell basal membranes in diabetic rats.
    Caldwell RB; Slapnick SM; McLaughlin BJ
    Exp Eye Res; 1987 Feb; 44(2):245-59. PubMed ID: 3582511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of Na-K-ATPase in the dystrophic rat retinal pigment epithelium.
    Caldwell RB; McLaughlin BJ
    J Neurocytol; 1984 Dec; 13(6):895-910. PubMed ID: 6100117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramembrane changes in retinal pigment epithelial cell junctions of the dystrophic rat retina.
    Caldwell RB; McLaughlin RJ; Boykins LG
    Invest Ophthalmol Vis Sci; 1982 Sep; 23(3):305-18. PubMed ID: 7107158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lanthanum and freeze-fracture studies of retinal pigment epithelial cell junctions in the streptozotocin diabetic rat.
    Caldwell RB; Slapnick SM; McLaughlin BJ
    Curr Eye Res; 1985 Mar; 4(3):215-27. PubMed ID: 3160541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filipin and digitonin studies of membrane cholesterol in frog atrial fibers with unusual gap junction configurations.
    Mazet F
    J Mol Cell Cardiol; 1987 Nov; 19(11):1121-8. PubMed ID: 3501809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal arrays of particles in non-pigmented cells of rat ciliary epithelium: relation to distribution of filipin- and digitonin-induced alterations of the basolateral membrane.
    Hirsch M; Gache D; Noske W
    Cell Tissue Res; 1988 Apr; 252(1):165-73. PubMed ID: 3378258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal pigment epithelial cells from dystrophic rats form normal tight junctions in vitro.
    Chang CW; Defoe DM; Caldwell RB
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):188-95. PubMed ID: 9008643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of filipin-sterol complexes in plasma membranes of the kidney. II. The thin limbs of Henle's loop.
    Orci L; Brown D
    Lab Invest; 1983 Jan; 48(1):80-9. PubMed ID: 6823094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability of retinal pigment epithelial cell junctions in the dystrophic rat retina.
    Caldwell RB; McLaughlin BJ
    Exp Eye Res; 1983 Mar; 36(3):415-27. PubMed ID: 6832232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features of and cholesterol distribution in M-cell membranes in guinea pig, rat, and mouse Peyer's patches.
    Madara JL; Bye WA; Trier JS
    Gastroenterology; 1984 Nov; 87(5):1091-103. PubMed ID: 6479532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topography of filipin-cholesterol complexes in the plasma membrane of cultured hepatocytes and their relation to cell junction formation.
    Robenek H; Jung W; Gebhardt R
    J Ultrastruct Res; 1982 Jan; 78(1):95-106. PubMed ID: 7077739
    [No Abstract]   [Full Text] [Related]  

  • 15. The tight junction as a barrier to cholesterol in canine epithelial cells.
    Miller RG; Baldridge WH
    J Ultrastruct Res; 1985 Mar; 90(3):275-85. PubMed ID: 4078966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of sterol-specific complexes at active zones of degenerating and regenerating frog neuromuscular junctions.
    Ko CP; Propst JW
    J Neurocytol; 1986 Apr; 15(2):231-40. PubMed ID: 3487623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filipin-sterol complexes in molluscan gill ciliated epithelial cell membranes: intercalation into ciliary necklaces and induction of gap junctional particle arrays.
    Stephens RE; Good MJ
    Cell Tissue Res; 1990 Nov; 262(2):301-6. PubMed ID: 2076536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of sterol-specific complexes in a continually shearing region of a plasma membrane and at procaryotic-eucaryotic cell junctions.
    Tamm SL; Tamm S
    J Cell Biol; 1983 Oct; 97(4):1098-106. PubMed ID: 6619188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filipin resistance in intermediate junction membranes of guinea pig ependyma: possible relationship to filamentous underlying.
    Gotow T; Hashimoto PH
    J Ultrastruct Res; 1983 Jul; 84(1):83-93. PubMed ID: 6684171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A freeze-fracture evidence for lateral expansion of the plasma membrane of rat retinal pigment epithelial cells.
    Matsusaka T
    Graefes Arch Clin Exp Ophthalmol; 1982; 219(5):209-13. PubMed ID: 7160627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.