These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 35818963)

  • 1. Genetics, epigenetics, and transcriptomics of preterm birth.
    Jain VG; Monangi N; Zhang G; Muglia LJ
    Am J Reprod Immunol; 2022 Oct; 88(4):e13600. PubMed ID: 35818963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth.
    Lien YC; Zhang Z; Cheng Y; Polyak E; Sillers L; Falk MJ; Ischiropoulos H; Parry S; Simmons RA
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous preterm birth: advances toward the discovery of genetic predisposition.
    Strauss JF; Romero R; Gomez-Lopez N; Haymond-Thornburg H; Modi BP; Teves ME; Pearson LN; York TP; Schenkein HA
    Am J Obstet Gynecol; 2018 Mar; 218(3):294-314.e2. PubMed ID: 29248470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2.
    Tiensuu H; Haapalainen AM; Karjalainen MK; Pasanen A; Huusko JM; Marttila R; Ojaniemi M; Muglia LJ; Hallman M; Rämet M
    PLoS Genet; 2019 Jun; 15(6):e1008107. PubMed ID: 31194736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth.
    Vora B; Wang A; Kosti I; Huang H; Paranjpe I; Woodruff TJ; MacKenzie T; Sirota M
    Front Immunol; 2018; 9():993. PubMed ID: 29867970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth.
    Huusko JM; Tiensuu H; Haapalainen AM; Pasanen A; Tissarinen P; Karjalainen MK; Zhang G; Christensen K; Ryckman KK; Jacobsson B; Murray JC; Kingsmore SF; Hallman M; Muglia LJ; Rämet M
    Sci Rep; 2021 Aug; 11(1):17115. PubMed ID: 34429451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing human and macaque placental transcriptomes to disentangle preterm birth pathology from gestational age effects.
    Eidem HR; Rinker DC; Ackerman WE; Buhimschi IA; Buhimschi CS; Dunn-Fletcher C; Kallapur SG; Pavličev M; Muglia LJ; Abbot P; Rokas A
    Placenta; 2016 May; 41():74-82. PubMed ID: 27208410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples.
    Hong X; Sherwood B; Ladd-Acosta C; Peng S; Ji H; Hao K; Burd I; Bartell TR; Wang G; Tsai HJ; Liu X; Ji Y; Wahl A; Caruso D; Lee-Parritz A; Zuckerman B; Wang X
    Epigenetics; 2018; 13(2):163-172. PubMed ID: 28165855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome and transcriptome profiling of spontaneous preterm birth phenotypes.
    Gupta JK; Care A; Goodfellow L; Alfirevic Z; Müller-Myhsok B; Alfirevic A
    Sci Rep; 2022 Jan; 12(1):1003. PubMed ID: 35046466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth.
    Huusko JM; Karjalainen MK; Graham BE; Zhang G; Farrow EG; Miller NA; Jacobsson B; Eidem HR; Murray JC; Bedell B; Breheny P; Brown NW; Bødker FL; Litterman NK; Jiang PP; Russell L; Hinds DA; Hu Y; ; Rokas A; Teramo K; Christensen K; Williams SM; Rämet M; Kingsmore SF; Ryckman KK; Hallman M; Muglia LJ
    PLoS Genet; 2018 Jul; 14(7):e1007394. PubMed ID: 30001343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of DNA methylation profiles associated with spontaneous preterm birth in placenta and cord blood.
    Wang XM; Tian FY; Fan LJ; Xie CB; Niu ZZ; Chen WQ
    BMC Med Genomics; 2019 Jan; 12(1):1. PubMed ID: 30606219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potential novel spontaneous preterm birth gene, AR, identified by linkage and association analysis of X chromosomal markers.
    Karjalainen MK; Huusko JM; Ulvila J; Sotkasiira J; Luukkonen A; Teramo K; Plunkett J; Anttila V; Palotie A; Haataja R; Muglia LJ; Hallman M
    PLoS One; 2012; 7(12):e51378. PubMed ID: 23227263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth.
    Yadama AP; Mirzakhani H; McElrath TF; Litonjua AA; Weiss ST
    PLoS One; 2020; 15(1):e0227193. PubMed ID: 31995561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between maternal/newborn genetic variants, placental pathology and spontaneous preterm birth risk: a Romanian population-based study.
    Preda A; Caracostea G; Ona D; Zaharie G; Stamatian F
    J Matern Fetal Neonatal Med; 2020 Apr; 33(7):1171-1177. PubMed ID: 30249138
    [No Abstract]   [Full Text] [Related]  

  • 15. Genome-wide association study identifies a novel maternal gene × stress interaction associated with spontaneous preterm birth.
    Hong X; Surkan PJ; Zhang B; Keiser A; Ji Y; Ji H; Burd I; Bustamante-Helfrich B; Ogunwole SM; Tang WY; Liu L; Pearson C; Cerda S; Zuckerman B; Hao L; Wang X
    Pediatr Res; 2021 May; 89(6):1549-1556. PubMed ID: 32726798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated analysis of transcriptomic datasets to identify placental biomarkers of spontaneous preterm birth.
    Sobhani NC; Mernoff R; Abraha M; Okorie CN; Marquez-Magana L; Gaw SL; Robinson JF
    Placenta; 2022 May; 122():66-73. PubMed ID: 35462239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CXCR3 Polymorphism and Expression Associate with Spontaneous Preterm Birth.
    Karjalainen MK; Ojaniemi M; Haapalainen AM; Mahlman M; Salminen A; Huusko JM; Määttä TA; Kaukola T; Anttonen J; Ulvila J; Haataja R; Teramo K; Kingsmore SF; Palotie A; Muglia LJ; Rämet M; Hallman M
    J Immunol; 2015 Sep; 195(5):2187-98. PubMed ID: 26209629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis.
    Haataja R; Karjalainen MK; Luukkonen A; Teramo K; Puttonen H; Ojaniemi M; Varilo T; Chaudhari BP; Plunkett J; Murray JC; McCarroll SA; Peltonen L; Muglia LJ; Palotie A; Hallman M
    PLoS Genet; 2011 Feb; 7(2):e1001293. PubMed ID: 21304894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes.
    Luo X; Pan J; Wang L; Wang P; Zhang M; Liu M; Dong Z; Meng Q; Tao X; Zhao X; Zhong J; Ju W; Gu Y; Jenkins EC; Brown WT; Shi Q; Zhong N
    BMC Pregnancy Childbirth; 2015 Feb; 15():35. PubMed ID: 25884766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole blood gene expression profile associated with spontaneous preterm birth in women with threatened preterm labor.
    Heng YJ; Pennell CE; Chua HN; Perkins JE; Lye SJ
    PLoS One; 2014; 9(5):e96901. PubMed ID: 24828675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.