BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35819188)

  • 1. On the stability of stalled RNA polymerase and its removal by RapA.
    Portman JR; Qayyum MZ; Murakami KS; Strick TR
    Nucleic Acids Res; 2022 Jul; 50(13):7396-7405. PubMed ID: 35819188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription under torsion.
    Ma J; Bai L; Wang MD
    Science; 2013 Jun; 340(6140):1580-3. PubMed ID: 23812716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor regulation of RNA polymerase's torque generation capacity.
    Ma J; Tan C; Gao X; Fulbright RM; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2583-2588. PubMed ID: 30635423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for transcription reactivation by RapA.
    Liu B; Zuo Y; Steitz TA
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2006-10. PubMed ID: 25646438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric Activation of Bacterial Swi2/Snf2 (Switch/Sucrose Non-fermentable) Protein RapA by RNA Polymerase: BIOCHEMICAL AND STRUCTURAL STUDIES.
    Kakar S; Fang X; Lubkowska L; Zhou YN; Shaw GX; Wang YX; Jin DJ; Kashlev M; Ji X
    J Biol Chem; 2015 Sep; 290(39):23656-69. PubMed ID: 26272746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli.
    Qayyum MZ; Molodtsov V; Renda A; Murakami KS
    J Biol Chem; 2021 Dec; 297(6):101404. PubMed ID: 34774797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue.
    Tetone LE; Friedman LJ; Osborne ML; Ravi H; Kyzer S; Stumper SK; Mooney RA; Landick R; Gelles J
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1081-E1090. PubMed ID: 28137878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA.
    Inlow K; Tenenbaum D; Friedman LJ; Kondev J; Gelles J
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2303849120. PubMed ID: 37406096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation.
    Hatoum A; Roberts J
    Mol Microbiol; 2008 Apr; 68(1):17-28. PubMed ID: 18333883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase.
    Shi W; Zhou W; Chen M; Yang Y; Hu Y; Liu B
    Nucleic Acids Res; 2021 Oct; 49(18):10707-10716. PubMed ID: 34428297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RapA, Escherichia coli RNA polymerase SWI/SNF subunit-dependent polyadenylation of RNA.
    Richmond M; Pasupula RR; Kansara SG; Autery JP; Monk BM; Sukhodolets MV
    Biochemistry; 2011 Mar; 50(12):2298-312. PubMed ID: 21299217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription.
    Shaw G; Gan J; Zhou YN; Zhi H; Subburaman P; Zhang R; Joachimiak A; Jin DJ; Ji X
    Structure; 2008 Sep; 16(9):1417-27. PubMed ID: 18786404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct restart of a replication fork stalled by a head-on RNA polymerase.
    Pomerantz RT; O'Donnell M
    Science; 2010 Jan; 327(5965):590-2. PubMed ID: 20110508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli.
    Yang J; Hwang JS; Camakaris H; Irawaty W; Ishihama A; Pittard J
    Mol Microbiol; 2004 Apr; 52(1):243-56. PubMed ID: 15049824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription.
    Jin DJ; Zhou YN; Shaw G; Ji X
    Biochim Biophys Acta; 2011 Sep; 1809(9):470-5. PubMed ID: 21419241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between RNA polymerase and RapA, a bacterial homolog of the SWI/SNF protein family.
    Sukhodolets MV; Jin DJ
    J Biol Chem; 2000 Jul; 275(29):22090-7. PubMed ID: 10801781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB.
    Kulbachinskiy A; Feklistov A; Krasheninnikov I; Goldfarb A; Nikiforov V
    Eur J Biochem; 2004 Dec; 271(23-24):4921-31. PubMed ID: 15606780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase.
    Agapov A; Ignatov A; Turtola M; Belogurov G; Esyunina D; Kulbachinskiy A
    J Biol Chem; 2020 Jul; 295(28):9583-9595. PubMed ID: 32439804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth phase and growth rate regulation of the rapA gene, encoding the RNA polymerase-associated protein RapA in Escherichia coli.
    Cabrera JE; Jin DJ
    J Bacteriol; 2001 Oct; 183(20):6126-34. PubMed ID: 11567013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Supercoiling in the Motor Activity of RNA Polymerases.
    Lesne A; Victor JM; Bertrand E; Basyuk E; Barbi M
    Methods Mol Biol; 2018; 1805():215-232. PubMed ID: 29971720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.