These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35819760)

  • 1. Imaging Insulin Granule Dynamics in Human Pancreatic β-Cells Using Total Internal Reflection Fluorescence (TIRF) Microscopy.
    Kang F; Gaisano HY
    Methods Mol Biol; 2022; 2473():79-88. PubMed ID: 35819760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging exocytosis of single insulin secretory granules with TIRF microscopy.
    Nagamatsu S; Ohara-Imaizumi M
    Methods Mol Biol; 2008; 440():259-68. PubMed ID: 18369952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy.
    Loder MK; Tsuboi T; Rutter GA
    Methods Mol Biol; 2013; 950():13-26. PubMed ID: 23086867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical Frailty Modeling for Quantitative Analysis of Exocytotic Events Recorded by Live Cell Imaging: Rapid Release of Insulin-Containing Granules Is Impaired in Human Diabetic β-cells.
    Cortese G; Gandasi NR; Barg S; Pedersen MG
    PLoS One; 2016; 11(12):e0167282. PubMed ID: 27907065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells.
    Ohara-Imaizumi M; Nishiwaki C; Kikuta T; Nagai S; Nakamichi Y; Nagamatsu S
    Biochem J; 2004 Jul; 381(Pt 1):13-8. PubMed ID: 15128287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous TIRF imaging of subplasmalemmal Ca
    Suckert C; Zosel C; Schaefer M
    Cell Calcium; 2024 Jun; 120():102883. PubMed ID: 38643716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K
    Greitzer-Antes D; Xie L; Qin T; Xie H; Zhu D; Dolai S; Liang T; Kang F; Hardy AB; He Y; Kang Y; Gaisano HY
    J Biol Chem; 2018 May; 293(18):6893-6904. PubMed ID: 29549124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeletal dependence of insulin granule movement dynamics in INS-1 beta-cells in response to glucose.
    Heaslip AT; Nelson SR; Lombardo AT; Beck Previs S; Armstrong J; Warshaw DM
    PLoS One; 2014; 9(10):e109082. PubMed ID: 25310693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of resident and newcomer insulin granules by calcium and SNARE proteins.
    Aoyagi K; Ohara-Imaizumi M; Nagamatsu S
    Front Biosci (Landmark Ed); 2011 Jan; 16(4):1197-210. PubMed ID: 21196227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Granuphilin exclusively mediates functional granule docking to the plasma membrane.
    Mizuno K; Fujita T; Gomi H; Izumi T
    Sci Rep; 2016 Apr; 6():23909. PubMed ID: 27032672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site of docking and fusion of insulin secretory granules in live MIN6 beta cells analyzed by TAT-conjugated anti-syntaxin 1 antibody and total internal reflection fluorescence microscopy.
    Ohara-Imaizumi M; Nishiwaki C; Kikuta T; Kumakura K; Nakamichi Y; Nagamatsu S
    J Biol Chem; 2004 Feb; 279(9):8403-8. PubMed ID: 14676208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping dynamic protein interactions to insulin secretory granule behavior with TIRF-FRET.
    Lam AD; Ismail S; Wu R; Yizhar O; Passmore DR; Ernst SA; Stuenkel EL
    Biophys J; 2010 Aug; 99(4):1311-20. PubMed ID: 20713017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis.
    Xu Y; Toomre DK; Bogan JS; Hao M
    J Cell Mol Med; 2017 Nov; 21(11):2950-2962. PubMed ID: 28544529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observer-independent quantification of insulin granule exocytosis and pre-exocytotic mobility by TIRF microscopy.
    Matz M; Schumacher K; Hatlapatka K; Lorenz D; Baumann K; Rustenbeck I
    Microsc Microanal; 2014 Feb; 20(1):206-18. PubMed ID: 24230985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous modes of insulin granule exocytosis: molecular determinants.
    Izumi T
    Front Biosci (Landmark Ed); 2011 Jan; 16(1):360-7. PubMed ID: 21196175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ELKS, a protein structurally related to the active zone-associated protein CAST, is expressed in pancreatic beta cells and functions in insulin exocytosis: interaction of ELKS with exocytotic machinery analyzed by total internal reflection fluorescence microscopy.
    Ohara-Imaizumi M; Ohtsuka T; Matsushima S; Akimoto Y; Nishiwaki C; Nakamichi Y; Kikuta T; Nagai S; Kawakami H; Watanabe T; Nagamatsu S
    Mol Biol Cell; 2005 Jul; 16(7):3289-300. PubMed ID: 15888548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose but not KCl diminishes submembrane granule turnover in mouse beta-cells.
    Brüning D; Reckers K; Drain P; Rustenbeck I
    J Mol Endocrinol; 2017 Oct; 59(3):311-324. PubMed ID: 28765259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of secretory granule maturation times in pancreatic islet β-cells by serial block-face electron microscopy.
    Rao A; McBride EL; Zhang G; Xu H; Cai T; Notkins AL; Aronova MA; Leapman RD
    J Struct Biol; 2020 Oct; 212(1):107584. PubMed ID: 32736074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.
    Xie L; Zhu D; Kang Y; Liang T; He Y; Gaisano HY
    PLoS One; 2013; 8(7):e67561. PubMed ID: 23844030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Visualizing exocytosis of insulin granules with total internal reflection fluorescence microscopy].
    Ohara-Imaizumi M; Nagamatsu S
    Nihon Yakurigaku Zasshi; 2005 Dec; 126(6):399-405. PubMed ID: 16462091
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.